データ・アナリティクス入門

データが拓くビジネスの未来

分析の本質とは? 分析とは、物事を分け整理することと、比較対象や基準を設けて比較することの両面が本質だと感じました。また、データ分析の目的や、どの項目をどのような形であたりをつけるのかという入り口の考え方も学べ、基本的な考え方がしっかりと理解できたと実感しています. 将来の分析戦略は? 今後は、顧客IDを活用して、CRM、Web行動、イベント、購買実績の時系列統合基盤を構築する力を高めるとともに、ビジネスゴールを離脱点や購買シグナルなどの具体的な分析課題に落とし込むスキルを向上させたいです。また、転換率やLTVなどのKPIを定義し、ダッシュボード上でリアルタイムに可視化しながら、閾値やアラートを設計する能力も伸ばしていく必要性を感じました. 実行計画はどう? 具体的な行動計画としては、まずCRM/MAの構造とAPIについて学び、ダッシュボードの運用や自動連携が自在に行えるレベルまで習熟することを目指します。次に、顧客ID基盤を活用してデータの抽出と整形を行い、分析用CSVを定期的に生成できる仕組みを構築します。さらに、RやPythonを用いた回帰分析やクラスタリングなどの手法を実施し、得られた示唆を速やかに施策へと反映できるサイクルを確立する方針です.

データ・アナリティクス入門

最適な判断基準を見つけるヒントとABテストの活用法

判断基準の選定に迷う時は? 業務において、プロセスごとに整理して効果を考えることは普段から行っているが、最適な案を選ぶための判断基準については意識が足りていなかったことに気づいた。判断基準の選定に迷うことが多かったが、今後は意識的に取り組みたい。また、思考を広げることは自分一人では難しいことがあると実感している。これまで、ABテストを意識して使ったことがなかったので、何か2つ以上のものの効果を検証したいときには、これを思い出したい。 広告提案時の改善策は? 広告提案時には、これまでの「広告を試してみないか」という提案方法を見直し、「効果がある広告を検証してみないか」と伝えることで改善が図れると思った。広告1種類のみで出稿が停止されるリスクも防ぐことができるだろう。 プロセスの解像度を上げるには? さらに、プロセスを意識して考えることは、現在取り組んでいる範囲だけでなく、自身の営業計画などにおいても有効な切り口となる。実例として、広告提案時に2つの効果があると考えられる施策を提案する際は、ABテストでの実施を打診してみることを考えたい。また、営業計画を立案する際には、プロセスの解像度を上げることが重要であり、そのために上長と壁打ちをすることを実践したい。

クリティカルシンキング入門

多角的視点で解決策を見つける方法

クリティカルシンキングの重要性とは? クリティカルシンキングでは、多角的な視点で問題を見つけ出し、イシューを明確化することが重要です。次に、数字で分解し、グラフなどを用いて視覚化することで理解しやすくなります。また、ピラミッドストラクチャーを使って適切に言語化することも大切だと感じました。 集客や求人における応用法は? 以前にも書きましたが、集客や求人に関する問題提起や、スタッフに技術や会社の思いを伝える際にクリティカルシンキングは効果的だと思います。主観的に考えるのではなく、異なる立場や切り口から問題を見ることで、冷静な判断ができるようになります。 経営と求人改善のポイント 例えば、集客では経営コストとのバランスを考え、ターゲット顧客が普段どの予約ツールや媒体を利用しているかを把握し、その改善方向を決めて運用します。求人でも同様に、媒体を把握し運用することが重要です。また、顧客や求職者に対して主観的なメリットだけでなく、他の視点から見たメリットやサービスを考え、提供することが求められます。 実施施策の効果測定は? さらに、実施した施策がどのように数字に現れているかを把握し、それを基に改善策を出して実行していきます。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

データ・アナリティクス入門

実践!比較で開く分析の扉

分析本質はどう捉える? 「分析の本質は比較」というテーマから、これまで漠然と捉えていた「分析」が、実は「比較」を前提として成り立っていることを再認識しました。比較対象が存在しなければ、意味のある分析は行えないという考え方に気づかされました。 課題整理はできてる? 現状の課題として、収集したデータがそのままに放置され、分析に必要な比較対象が適切に選定されていない点、そして分析の目的が明確になっていない点が挙げられます。これらの課題を意識し、今後の業務改善に活かしていきたいと思います。 数値の変化はどうなってる? コミュニティ運営では、入会や退会の集計を実施していますが、リソースの問題から、十分な分析には至っていませんでした。しかし、年単位の集計により、昨年や一昨年と比較してどのような数値になっているのか、またその数値に影響している要因は何かといった点を把握できると実感しています。 改善策は何だろう? 今後は、分析の目的を明確にし、必要なデータ収集に努めるとともに、入会時および退会時のアンケート項目の見直しを実施します。そして、毎月の施策と入退会の関連性を紐付けることで、より実践的な分析を展開していきたいと考えています。

データ・アナリティクス入門

仮説から未来を拓く学び

なぜ仮説は大切? 「良い仮説」という言葉が非常に印象に残りました。これまで、問題が発生した際には、過去の経験や思い込みに基づいた一方的な判断に頼っていた部分があったと感じています。今後は、問題に対して複数の仮説を立て、それぞれを検証していくことが大切であると考えています。 売上課題の原因は? 私の担当している製品販売では、代理店を通じた受注や売上に関する問題が頻繁に生じます。こうした課題に対しては、さまざまな仮説を立て、検証を進めることで問題解決を図る必要があります。特に、施策と受注売上の関係性を十分に考慮して対応することが重要だと思います。 セミナーの現状は? まずは、施策に関する問題点を整理することから始めます。長年、定期的にセミナーなどを実施してきましたが、必ずしも思うような成果に結びついていない現状があります。今後は、まず顧客のニーズを正確に把握し、現行のセミナー内容が実際に顧客の要望に合致しているのか、改めて検証する必要があると考えます。 3C分析で状況は? そして、まずは3C分析を通じて状況を明確に把握した上で、複数の仮説を立て、順次検証を行っていくことで、今後の改善策を模索していきたいと思います。

データ・アナリティクス入門

多面的視点で掴む成長のカギ

原因を探るヒントは? 原因を探る際には、与えられたデータのみならず、プロセス全体に目を向けることで、より深い示唆を得ることができます。このアプローチは、問題に関わる要素とそうでない要素を分ける「対概念」という考え方にも通じています。 A/Bテストの重要性は? たとえば、WEB画面のUIUX検討時には、これまで担当者が一案に絞ってリリースしていたため、思い描いた効果が得られなかったという事例があります。今後は、複数の施策を同一条件下で比較するA/Bテストを活用し、データに基づいて顧客に響く施策を選定する手法に切り替えていきます。 営業プロセス見直しは? また、営業活動による収益最適化のデータ分析では、営業プロセスが曖昧に分類されていたため、正確な要素抽出が困難でした。そこでフロントメンバーへの丁寧なヒアリングを実施し、プロセスを適切に分割することで、各要素を明確に特定し、分析精度を向上させています。 テスト実施の秘訣は? さらに、A/Bテストの実施にあたっては、期間設定や施策パターン数の考慮が重要なポイントとなっています。これらの条件をどのように整えるかが、テストの効果を左右する鍵となるでしょう。

データ・アナリティクス入門

データ分析から始める業務効率化のアイデア集

分析はどのプロセスから始める? <印象に残った内容> ・プロセスに分解し、各プロセス毎に数値を見る ・A/Bテストの前に目的と仮説を明確にする ・データ分析はまず身近な課題から着手する A/Bテストの代替案は? <感想> A/Bテストはオンラインサービスとの相性が非常に良いが、対面サービスやコストの問題で簡単に実施できない場合の代替案が気になりました。 残業時間削減へのアプローチ ①社内で使用しているSFA(営業支援システム)の切り替えに伴い、入力画面のインターフェース検討においてFigma等のツールを使ってA/Bテストを実施し、手戻りが無いようにする。 ②今後の人員削減に伴い、業務の棚卸しを行う。 この切り替えは少し先になるため、思考訓練として自分の残業時間を減らすための施策を考えました。 まず、業務の洗い出しと各業務のプロセスの分析を行います。そして、以下の代案を検討します。 外注や自動化は可能? ・外注の可能性を探る  ・無料の外注が可能か  ・有料の外注が利用できるか ・自動化を進める ・不要なプロセスを廃止する 以上のステップを踏み、効率的かつ効果的な業務運営を目指したいと考えています。

戦略思考入門

顧客視点で切り拓く実践の真髄

顧客視点は何が大事? 施策自体は数多く存在し、斬新なアイディアも含まれる中で、自社の環境に合わせた実効性のある打ち手を実施するためには、正確に差別化を行うことが不可欠だと実感しました。何よりも重要なのは顧客目線であると気づかされ、社内の打ち合わせや申請フローに追われながらも、常に顧客の視点を忘れずに取り組むことが大切だと思います。また、考え方のサポートとなるフレームワークを活用することで、具体的なアプローチがより明確になると感じています。 企画段階で差は出る? 食品という限定されない商品群を取り扱う中では、企画や提案の段階で差別化を意識することが求められます。今後は、顧客が望む売上や利益のタイミング、さらには消費者が求める品揃えや展開時期をしっかり考慮し、競合他社との差異を明確にした上で提案を進める姿勢を徹底したいと考えています。 業界の可能性は? また、自身が属する食品業界については、バリューチェーンやシナリオプランニングの手法を用いて分析を開始し、業界内の自社の位置づけや可能性を具体的に把握しようと考えています。同様の手法を担当先でも活用し、知識と実践の両面で理解を深め、記憶に定着させることを目指します。

クリティカルシンキング入門

社員研修の見直しで業務効率アップへの道

イシュー設定の重要性を認識 イシューから考えることの重要性を認識しました。施策を考え始める前に、まずイシューを明確かつ具体的に立てることが大切です。これまでに学んだデータの分析・加工方法を活用し、様々な角度からイシューを検討して特定することが必要です。 なぜ研修が必要なのか? 現在の業務において、人事施策、例えば研修内容を検討する際、研修を実施することが目的となりがちでした(= 手段の目的化)。そうではなく、「なぜ研修が必要なのか」を考え、社内のイシューを様々な角度から抽出したうえで、その解決方法として研修が適切ならば研修を行うべきです。しかし、研修以外が適切と判断される場合は、研修を行わない選択も必要だと感じました。 社内イシューをどう特定するか? 社内・現場のイシューを的確に把握するために、従業員へのアンケートや管理職への個別ヒアリングを通じて、イシューの特定を丁寧に行っていきたいと考えています。イシューの特定には、その根拠を具体的かつ明確に説明し、そのうえで研修が適切な解決策なのかを検討します。研修またはその他施策により、特定したイシューの解決を行っていきます。まずは今週から取り組むこととしました。

クリティカルシンキング入門

目標が紡ぐ学びの軌跡

目的は何と考える? 目的を常に意識することは大変重要です。考えれば考えるほど、どうしても眼の前の事柄に気を取られてしまいがちです。そのため、「目的に沿って問を正しく設定し、問いに基づいた思考の枠組みを確立し、もれなくダブりなく考える」というステップを、常に意識して実践するように心がけています。 振り返りの意味は? また、月次や半期の振り返りに際しては、単に目先の結果を見るだけでなく、どのような目的のもと、どんなプロセスを経て現状に至ったのかを総合的に捉えることが大切です。目的、プロセス、結果のすべてをセットで振り返ることで、次月以降の戦略に活かすことができます。もし、施策の目的が明確でなければ、異なるプロセスであっても同じ結果が生じる可能性があるため注意が必要です。 問いの大切さは? さらに、まずは問いを立てることが最も大切です。施策の説明に入る前に、なぜその施策に至ったのか、施策を実施するメリットや課題は何であるのかといった背景を整理し、なぜその行動を取るべきなのかを自分自身で明確にする必要があります。これにより、思考の枠組みを有効に活用しながら、他者にも分かりやすく説明できると考えています。

データ・アナリティクス入門

数字を紡ぐ、現場からのヒント

どう分析すれば良い? 「やみくもに分析しない」という言葉を目にし、データ分析の奥深さを再認識しました。現在、チームで検討中の施策に対し、まずは営業担当へのインタビューを実施し、そこで多くの意見が寄せられた内容については、全体を対象にアンケートを行う計画です。 数字の根拠は何故? 数字の根拠をもとにストーリーを作り上げる手法は、相手に響く説得力を持たせる上で非常に重要であると改めて感じました。この考えを念頭に置きながら、実務におけるデータ分析のアプローチをさらに熟考する機会となりました。Week6で総復習を予定していた中で、新たな気づきを得ることができたのは大きな収穫でした。 実務データの秘訣? また、AIコーチングからは、実務における定性データ(インタビューやアンケート)と定量データとの整合性や、数字の根拠から効果的なストーリーを作るための仮説検証のプロセスについての問いをいただきました。まずは、アンケートを通じて定量データを効率よく収集できる仕組み作りに取り組むとともに、過去から蓄積している定量データの中から、今回の営業担当へのアンケートに活用できるものがないかを洗い出してみようと思います。
AIコーチング導線バナー

「施策 × 実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right