データ・アナリティクス入門

比較思考がひらく未来への扉

目的と仮説はどう? WEEK1で学んだ内容を振り返る中で、データ分析は「比較」を基本として行われると再認識しました。まず、目的を明確に定め、自分なりの仮説を立てた上で、必要なデータを収集し、分析を実施することで、目標達成のための示唆や考察が導き出されることが理解できました。 解決手順はどう? 問題解決の過程では、「What, Where, Why, How」といった基本ステップを踏むことが大切ですが、これに加えてロジックツリーやMECE、3Cや4Pといったフレームワークを活用することで、より効果的に仮説が立てられると感じました。 データから何得る? また、数字や数式での集約やグラフによる可視化が分析をサポートし、実数と率の両面からのアプローチが有効であると学びました。同時に、既存のデータだけに頼るのではなく、必要なデータを自ら収集する努力と、都合の良いデータに偏らない分析の姿勢が重要だと痛感しました。実施前後の比較を通じて施策の効果検証を行う場面も多く、今期の採用活動の変革を始めとした各施策の評価に、この学びを活かしていきたいと考えています。

データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

デザイン思考入門

本当の課題はユーザーの声にあり

導入の不安は何? AIなどの新しい技術を自社の業務に導入する際、最適な方法が明確でないことが多く、適当な仮説に頼るだけではユーザーのニーズを十分に捉えられず、導入がうまくいかない事例があると感じました。観察やインタビューを行い、ユーザーが直面している本当の課題を定義することが、根拠に基づいた施策の展開につながるのではないでしょうか。 事前準備は十分? ただし、観察やインタビューを最初に実施する際、聞く内容があらかじめ決まっていないと十分な情報が得られないのではないか、という懸念もあります。一方で、こちらが求める回答にユーザーを誘導してしまう危険性もあるため、フラットな立場でユーザーの本音を引き出し、客観的に分析するプロセスが不可欠だと考えます。 ユーザー視点は大事? 特に、共感を基盤とした課題定義の段階では、ユーザー中心の視点が非常に重要です。業務においては、新しい技術やソリューション自体に焦点が当たり、答えあたりの議論に陥りがちですが、常に解決すべきはユーザーの本質的な課題であることを念頭に置き、施策の検討を進めたいと思います。

戦略思考入門

戦略で広がる学びの世界

どう戦略を描く? 戦略的思考とは、定めた目標を達成するために、現在位置から最速かつ最短の道筋を見出す方法です。また、正面から戦うべきでないと判断される障壁を回避することも、その重要な要素といえます。目的が明確であり、全体のプロセスを俯瞰できること、そして必要な行動を選択できることが求められます。さらに、目標を短期的および中長期的に整理・設定し、一貫した論理性を維持することが不可欠です。このプロセスを周囲に示すことで、共感を得て協力を取り付けることが可能となります。 どう課題を整理する? 一方、病院の経営改善においては、まず短期的な経営課題を抽出し、それらを整理・統合して3つの大きな戦略テーマを設定しました。それぞれのテーマに対して、複数の視点から戦略目標を設定し、重要な成功要因を特定しています。そして、第2~第4四半期までの目標達成に向けた結果指標と具体的なアクションプランを策定中です。全体を俯瞰しながら優先順位を明確にし、どの施策をどの順番で実施するかの計画を立てる際に、戦略的思考を積極的に取り入れていきたいと考えています。

データ・アナリティクス入門

数字と仮説で描く成長ストーリー

実践と検証はどう感じた? ライブ授業では、これまで学んできた内容の復習と実践演習ができた点がとても良かったです。データ分析においては、単純に数字を眺めるのではなく、比較を用いてしっかりと検証し、問題解決のプロセスに沿って取り組むことの大切さを実感しました。また、仮説を立ててからデータ収集を行い、やみくもな分析ではなく、数字の根拠に基づいたストーリーを構築する重要性を改めて認識しました。 施策はどう整理する? 今年度のマーケティング施策の振り返りにおいては、まず仮説をしっかりと立て、その後に問題解決のプロセスに沿って必要なデータを収集し、分析を進めています。さらに、来年度の施策を検討する際も、予め仮説を整え、後でデータ分析がしやすい状態で施策を実施する計画です。 仮説と比較で何が判明? 現在、各メンバーに仮説の策定を依頼しており、分析に必要なデータを収集する段階へと進んでいます。集めたデータを比較することで、成果が出た施策の要因や、あまり効果が現れなかった理由について、具体的な考察を進めていく予定です。

データ・アナリティクス入門

売上低下の真因を明らかにする分析術

総復習で得た新たな視点とは? 今までの講義の総復習だったので、各パーツで学んだ内容を一連の流れとして把握できました。仮説、網羅的思考、目的の設定、見せ方、分解など、分析の知識と新たな思考法を学ぶことができました。また、結果をイメージした分析の重要性も体感することができました。 なぜ売上が思わしくないのか? 現在、売上が思わしくないため、きちんと目的を持った分析、原因の追究、仮説・検証の繰り返し、そして網羅的な思考を意識して業務に取り組みたいと考えています。さらに、定性的な言葉と定量的なデータを組み合わせることで、説得力のある提案ができるようにしたいです。 今後の施策にどう活かす? 売上が上がらなかった理由については、いくつかの仮説があります。まずはこれを基準に分析を行い、それに加えて網羅的な仮説も追加して多角的な分析と提案を実施していきます。原因の追究を行い、今後の施策に活かすことが重要です。また、数値がなくても、今回学んだ思考は応用可能な部分があると思うので、売上の改善に役立てていきたいと考えています。

データ・アナリティクス入門

仮説と会議で拓く未来戦略

テスト実施に何が大事? ABテストについては、これまで営業部門で実施した結果を共有した経験がありますが、今回主体的に実施する際の留意点を改めて学びました。特に、テストを行う際には目的と仮説を明確にし、しっかりとした検証項目を設定することが重要だと感じました。今後の新規事業展開において、これらのポイントを意識して進めていきたいと思います。 評価の選定はどうする? また、複数の解決策を効果と費用のXY軸で評価した経験から、評価基準をさらに1~2項目増やし、数値化することで、総合評価に基づいた優先実施策の選定に取り組んでみたいと考えています。評価基準を選定する際にブレインストーミングを交えた議論を行う過程も楽しみです。 会議計画の進め方は? さらに、月次の経営会議において、各営業部門が問題抽出、原因究明、解決策の洗い出し、実施試作の選定、アクションプランの作成、進捗共有という一連のプロセスを推進する会議計画を策定することを提案し、年度内に効果検証を実施する案についても、社内で相談を進めていきたいと考えています。

リーダーシップ・キャリアビジョン入門

目標の言葉が心をつなぐ

目標共有は伝わる? 目標をメンバーにわかりやすく伝え、意図や意味を共有する重要性は認識していましたが、「わかる」と「やる」は必ずしも一致しないことを改めて実感しました。自分自身でもまだ整理しきれておらず、計画にまで落とし込めていない状態です。 グループ目標はどう? 自部門やグループに明確な目標がなかったことから、役職者研修の構築にあたり、経営戦略や来期の部門目標の策定を研修ワークに取り入れることにしました。自部門で研修ワークを実施しながら、全員でグループ目標を作り上げました。さまざまな議論を通して、皆の意識や考えを理解し、何をすべきかを腹を割って話し合った結果、結束力が以前より多少強まったと感じています。目標の共通認識を持つことの重要性を実感しました。 記憶に残る工夫は? ただし、策定した部門目標は記憶に残りにくい面があるため、週次ミーティングの冒頭で必ず唱和することにしています。また、皆で言葉の一つ一つを擦り合わせることで、次のステップに進み、具体的な施策を実行するためのミーティングを設ける予定です。

データ・アナリティクス入門

仮説実験で見える成果への道

ABテストの教訓は何? ABテストで学んだことは、仮説を検証する際に検証対象以外の要素はできるだけ固定することの重要性です。過去には、時期的な要素を十分に考慮せずに振り返りを行った結果、どの部分が効果につながったのかが不明確になった経験があり、今後はこの点に注意していきたいと考えています。 クリエイティブはどう検証? また、クリエイティブの検証においては、検証項目以外の要素が多いため、何を検証するのか、どの要素を変更するのかを明確にする必要性を実感しました。これにより、取り組む際の焦点が定まり、より効果的な結果が得られると考えています。 実施方法はどう評価? 具体的には、広告動画の検証でストーリーの流れはほぼ同じに保ちつつ、一部の要素だけを変更する手法を採用しました。さらに、同じ期間で配信を行い、得られた結果を比較検証することで、効果が認められたものを今後の施策に活かす予定です。 新たな仮説は何から? 今後は、別の項目についても新たな仮説を立て、同様のテストフローを構築していく計画です。

データ・アナリティクス入門

振り返りが照らす学びの道

目的と手段の違いは? 分析に取り組む際、まず「要素の分類化」や「比較」という視点を確認しました。分析はあくまで手段であり、目的ではないという点が印象に残ります。これにより、仮説を元に進める中で、途中から「差分探し」が目的化してしまわないよう注意する必要性を感じました。 レポート設定の意義は? また、定期的な分析レポートを実施する際には、改めてその目的を明確に設定することが大切だと再認識しました。業務の中で、分析自体が目的とならず、真に必要な意味を見出すために、常に差分に敏感になり、その差分がどのような意味を持つのかを意識する習慣を身につけることが求められます。 PDCAはどう実践する? さらに、すべての分析には仮説を立て、得られた結果に基づいて施策のPDCAサイクルを実行することが基本です。報告時には、ただ結果を示すだけでなく、分析の目的や背景を相手に伝える工夫が必要です。分析を終えた後は、やりっぱなしにせず、必ず振り返りの時間を設け、次のアクションにつなげることが今後の改善に寄与するでしょう。

アカウンティング入門

守る価値 育む成長の秘訣

本当に価値を守れてる? 企業が利益を上げるためには、売上を増加させるとともに費用を削減する必要があります。しかし、各施策を検討する際には、自社が大切にしている価値を十分に考慮することが求められます。無闇に費用を削減すれば、大切にしていた価値が失われ、その価値に共感していたお客様が離れてしまい、結果として売上が下がり利益が出なくなる可能性があります。 コアバリュー再認識は? そのため、幹部候補メンバーとの事業計画策定時には、まず自社のコアバリューを再認識してもらい、その上で売上増加と費用削減の施策を検討してもらいます。出てきた各アイデアについては、自社のコアバリューを損なわないかどうかを丁寧に確認していくことが必要です。 数値が示す真実は? また、幹部候補メンバーには、自社のお客様と売上のデータを分析し、お客様が何に価値を感じているのかを考えてもらいます。その「価値」が損なわれない範囲で実施できる費用削減策と、その「価値」をさらに高め、売上増加につながる施策を立案することが求められます。

「施策 × 実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right