データ・アナリティクス入門

多様な視点で挑む問題解決術

原因と解決策は? 今週は、問題の原因分析とそこから導かれる解決策の立案方法について学びました。まず、問題の原因を明らかにする際、各プロセスに分解して考えるアプローチが有効であることを再認識しました。また、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠をもとに絞り込むことが重要であると理解できました。さらに、A/Bテストの手法が、A案とB案の施策を比較しながら仮説検証を行う上で非常に有用である点に注目しました。ただし、正確な比較を行うためには、両案の条件をできる限り揃える必要があることも学びました。 同時試行は効果的? 従来は、問題の原因をプロセスごとに分解して考えることは自然に行ってきましたが、複数のアイディアを同時に試すという手法は初めての体験でした。A/Bテストでは、一定のクオリティを保った施策を同時に実施するため、一時的に業務負荷が増すものの、原因をより明確に特定できるため、裏付けのある施策の実行に効果的であると感じました。たとえば、組織内で報告体制の改善を図る際、決め打ちの方法に固執するのではなく、A/Bテスト的な視点から問題を解決するアプローチにも挑戦してみたいと思いました。

データ・アナリティクス入門

仮説と試行錯誤で切り拓く未来

仮説構築はどう始める? 仮説を立てる際には、3Cや4Pといった切り口を活用し、情報を整理することで仮説ストーリーを構築しやすくなります。仮説は結論仮説と問題解決のための仮説に分かれ、検証にはデータ収集が不可欠です。その際、誰にどのように聞くかを工夫することで、仮説に沿ったデータが得られると感じました。 計画検討は何を確認? お客様の活用コミュニケーションの計画を検討する場合、これまでの施策結果の課題、どの部分で課題が生じているのか、その原因、そして施策変更による改善策について、段階的に細分化して考える必要があると認識しました。仮説の流れは「What → Where → Why → How」という順序で検討することで、論理的に整理されやすいと感じています。 検証実施はどう進む? 一方で、自分の組み立てた仮説が正しいかどうかについて、常に不安を感じることがあります。授業では、仮説に疑問があってもまずは早く検証を回すことが大切であると指導いただきました。しかし、実際にその検証を迅速に進めるためには、どのようなアプローチが最適なのか、今後も試行錯誤しながら検討していきたいと思います。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

クリティカルシンキング入門

問題の本質を捉える力を磨こう

本質はどう見える? 課題解決において、目の前の問題に直接取り組むのではなく、本質をとらえてイシューを明確にすることの重要性を感じました。これを実現するためには、物事を多角的に分析する必要があります。また、WEEK1からの学びをすべて振り返ることが今回の学びにつながると感じたため、再度復習をしようと考えました。 処方データの示唆? 医師への処方拡大を検討する際には、処方データや医師の治療方針などから課題を特定します。薬剤の処方データを扱う際には、複数の観点からデータを分解し、適切なグラフで傾向を示します。その後、イシューを特定し、実施すべき施策を決定します。 対象エリアは? 講演会を企画する場合には、対象エリアのデータを再確認して、取り組むべき内容について検討します。企画書を作成する際には、この情報をもとに具体的な内容を決定します。 計画の根拠は? 上長への活動計画の報告においては、担当施設の現状をデータにより明確化し、ボトルネックを明らかにした上で、なぜその計画に至ったのかを説明します。こうしたアプローチを取ることで、本質的な課題解決を進めることができます。

クリティカルシンキング入門

振り返りで見える学びの軌跡

データから課題は? データをもとに課題を明確にし、施策を立案する際は、情報を細かく分解して具体的な問題部分を特定することが重要です。問題箇所がはっきりしていないと、誤った施策を実施してしまい、問題解決に繋がらない恐れがあります。 イシューの原点は? 一方で、最初に設定したイシューを忘れずに保持する姿勢も大切です。人間はつい本来のイシューから逸れてしまいがちですが、常に立ち戻りながら議論を進めることで、正確な解決策を見出すことが可能になります。 問題の本質は? また、品質マネジメントの観点から、オペレーションミスの報告データを扱う場合、単にデータを眺めるだけでなく、さまざまな切り口で分解し、どこに問題が潜んでいるのかを明確にすることが有効だと感じています。 会議の進め方は? さらに、会議においてイシューがズレることはよくあります。そのため、必ずアジェンダを設定し、各項目ごとに目標を明確に共有する体制を整えることが必要です。あいまいな状態で会議を終えるのではなく、具体的なアクションにつながる形で議論を締めくくることが、問題解決への一歩となると考えています。

リーダーシップ・キャリアビジョン入門

部下への委譲が紡ぐ成長物語

部下への権限委譲って? 部下への権限委譲というテーマがとても印象に残りました。上司との面談で、部下に仕事を任せるよう指導されたばかりの状況でした。 委譲で得るメリットは? 当初、部下に自分ができる業務を委譲することで、時間を確保できる点に対して少し負い目を感じることもありました。しかし、部下の立場からみると、上司が行っている仕事に携わることで視野が広がり、さまざまなメリットが得られると改めて感じました。 エンパワーメントって? 今後はエンパワーメントを意識し、自分が取り組んでいるルーティン業務や施策、企画を部下と共有し、一緒に進めていこうと思います。こうすることで、次は自分も上司の仕事に目を向け、エンパワーメントを実感できるようになることを目指します。 業務の見える化は? さらに、自分、部下、上司それぞれの業務を書き出し、委譲できる仕事、自己で担うべき仕事、そして委譲を受けたい仕事といった項目を整理することで、業務の見える化を図ろうと考えています。これを今回だけでなく、半年に一度程度定期的に実施して、業務を振り返る習慣を確立したいと思います。

データ・アナリティクス入門

異なる視点で学ぶビジネス洞察力

どんな発見があった? 演習を通じて、様々な背景や経験を持つ人々が異なる視点でアイデアを出し合う面白さを感じました。今回の学習では、いくつかの前提や仮説があらかじめ定義されていましたが、実際のビジネスの現場では、表面的な事象(例えば売上げの減少)に対して、どのような前提を確認し、どのような仮説を立てるのか、さらにそれをどのように検証していくのかが重要です。この試行の回数も含めたプロセスが必要だと感じました。 現状分析はどう考える? 自社のビジネス分析全般に応用できるフレームワークだと思います。特定のサービスやアドオンの売上げ増減の理由を分析し、その再現性を確認して次の施策立案に繋げる振る舞いは、特に営業系の領域では常に求められています。 カウンター施策は何か? たとえば、前四半期ではある製品の低価格版の失注率が高かったとします。それに対して、他社がSMB向けに競争力のあるキャンペーンを実施していたことが判明し、それに応じたカウンター施策やカウンタートークの検討が必要となるように、課題の発見から分析・施策立案のサイクルを意識的に回してみることが大切です。

データ・アナリティクス入門

比較思考がひらく未来への扉

目的と仮説はどう? WEEK1で学んだ内容を振り返る中で、データ分析は「比較」を基本として行われると再認識しました。まず、目的を明確に定め、自分なりの仮説を立てた上で、必要なデータを収集し、分析を実施することで、目標達成のための示唆や考察が導き出されることが理解できました。 解決手順はどう? 問題解決の過程では、「What, Where, Why, How」といった基本ステップを踏むことが大切ですが、これに加えてロジックツリーやMECE、3Cや4Pといったフレームワークを活用することで、より効果的に仮説が立てられると感じました。 データから何得る? また、数字や数式での集約やグラフによる可視化が分析をサポートし、実数と率の両面からのアプローチが有効であると学びました。同時に、既存のデータだけに頼るのではなく、必要なデータを自ら収集する努力と、都合の良いデータに偏らない分析の姿勢が重要だと痛感しました。実施前後の比較を通じて施策の効果検証を行う場面も多く、今期の採用活動の変革を始めとした各施策の評価に、この学びを活かしていきたいと考えています。

データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

デザイン思考入門

本当の課題はユーザーの声にあり

導入の不安は何? AIなどの新しい技術を自社の業務に導入する際、最適な方法が明確でないことが多く、適当な仮説に頼るだけではユーザーのニーズを十分に捉えられず、導入がうまくいかない事例があると感じました。観察やインタビューを行い、ユーザーが直面している本当の課題を定義することが、根拠に基づいた施策の展開につながるのではないでしょうか。 事前準備は十分? ただし、観察やインタビューを最初に実施する際、聞く内容があらかじめ決まっていないと十分な情報が得られないのではないか、という懸念もあります。一方で、こちらが求める回答にユーザーを誘導してしまう危険性もあるため、フラットな立場でユーザーの本音を引き出し、客観的に分析するプロセスが不可欠だと考えます。 ユーザー視点は大事? 特に、共感を基盤とした課題定義の段階では、ユーザー中心の視点が非常に重要です。業務においては、新しい技術やソリューション自体に焦点が当たり、答えあたりの議論に陥りがちですが、常に解決すべきはユーザーの本質的な課題であることを念頭に置き、施策の検討を進めたいと思います。

戦略思考入門

戦略で広がる学びの世界

どう戦略を描く? 戦略的思考とは、定めた目標を達成するために、現在位置から最速かつ最短の道筋を見出す方法です。また、正面から戦うべきでないと判断される障壁を回避することも、その重要な要素といえます。目的が明確であり、全体のプロセスを俯瞰できること、そして必要な行動を選択できることが求められます。さらに、目標を短期的および中長期的に整理・設定し、一貫した論理性を維持することが不可欠です。このプロセスを周囲に示すことで、共感を得て協力を取り付けることが可能となります。 どう課題を整理する? 一方、病院の経営改善においては、まず短期的な経営課題を抽出し、それらを整理・統合して3つの大きな戦略テーマを設定しました。それぞれのテーマに対して、複数の視点から戦略目標を設定し、重要な成功要因を特定しています。そして、第2~第4四半期までの目標達成に向けた結果指標と具体的なアクションプランを策定中です。全体を俯瞰しながら優先順位を明確にし、どの施策をどの順番で実施するかの計画を立てる際に、戦略的思考を積極的に取り入れていきたいと考えています。
AIコーチング導線バナー

「施策 × 実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right