データ・アナリティクス入門

焦らずじっくり、物語で解決

どの結果を目指す? 分析に取り組む際、すぐに手をつけがちですが、まずは結果をイメージし、どのようなストーリーで進めるかを考えることが非常に大切だと感じています。What、Where、Why、Howの各視点を意識することで、問題解決へのアプローチが明確になると思います。 焦らず目的は何? また、分析業務の増加に伴い、結果を急ぐあまり焦ることがありました。しかし、焦るのではなく、目的を明確にし、ストーリー構築に十分な時間をかけるべきだという考えに至りました。これまでは十分な計画を立てずに作業を進めた結果、自分の苦手な部分が露呈していたと実感しています。 広い視野で挑む? 今後は、課題解決に向けた仮説の設定やストーリーの構築を、より広い視野で取り組んでいきたいと考えています。

クリティカルシンキング入門

広い視野とクリティカル・シンキングで問題解決に挑む方法

マーケティングで必要なスキルは? マーケティングにおいて、広い視点・視野・視座で物事を判断するスキルは必須能力だと感じています。特に、マーケティングの根幹であるインサイト理解や顧客ニーズの把握には、論理的思考を用いることでより具体的な仮説を立てられると思いました。 タスクへの取り組み方をどう見直す? 日々のタスクにおいては、なぜそのタスクを行うのか、課題は何なのかを問いの形でイシューを設定し、納得できる答えを探す取り組みを繰り返していきたいと考えています。このようにしてクリティカル・シンキングを自分のスキルとして浸透させたいと思います。 資料作成で心がけるべき点は? 資料作成やコンテンツ制作の際には、第三者に伝わりやすい見た目や内容、文章を意識して取り掛かりたいです。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

データ・アナリティクス入門

仮説検証で磨く伝わる分析術

どんな学びがあった? 今回の学習を通じて、自分の不足点や修正すべき点を改めて確認することができました。 仮説検証は十分? まず、仮説を検証する過程で、データの取得や加工は行ってきたものの、否定的な視点からその仮説が正しいかどうかを十分に検証する必要があると感じました。次に、分析時には適切なフレームワークの活用が重要であると再認識しました。さらに、結論をまとめた際、相手に正しく情報を伝えるために、グラフなどの視覚資料の選び方や説明の仕方が大きく影響することも学びました。 改善に向けて何? これらの学びを生かし、今後は自己の課題や修正点に注意しながら、分析や報告の方法を工夫していくことで、上司の理解や納得を得られる報告資料を作成していきたいと考えています。

データ・アナリティクス入門

新たな視点で未来を切り拓く

分析の目的は何? 分析の目的や検証したい仮説を明確にすることで、アウトプットの内容が大きく変わると感じました。いきなり分析に着手するのではなく、どの切り口を採用するかを検討することで、分析の精度が向上すると実感しています。 新たな視点はどう捉える? これまで、売上データの分析など同じ流れで進めてきた結果、似たようなアウトプットになっているという課題がありました。そのため、今後は新たな視点を導入し、自分自身やチームのメンバーが新しい気づきを得られるよう意識していきます。 バイアスをどう排除する? また、従来のバイアスをできる限り排除する分析手法と、その結果をチーム全体で共有する取り組みを進め、具体的な施策につなげられるよう努めていきたいと考えています。

データ・アナリティクス入門

多角的思考で拓く仮説の極意

全体視点は必要? 仮説は、全体を見渡す視点を持って立てる必要があります。複数の仮説を構築し、網羅性のある状態を維持することが重要だと感じました。 反省にどう向き合う? しかし、仮説が一度立てられた時点で、それで満足してしまうことがあると反省しています。今後は、複数の観点から仮説を組み立て、観点の漏れがないよう努めたいと思います。 検討のポイントは? 具体的には、課題解決のプロセスにおいて「ヒト・モノ・カネ」や「業務プロセス」といった基本の観点を軸に仮説を検討していくことが効果的だと考えています。また、一度仮説を立てた後には、他に見落とすべき観点がないかどうかを常に問い直す姿勢を持つように心がけたいです。

データ・アナリティクス入門

仮説と比較で切り拓く未来

分析プロセスの進み方は? 今回の学習では、データ分析の思考プロセスを体系的に学び、特に三つの重要なポイントを意識することができました。まず、仮説を持つことでプロセスが早く進むという点、次に、分析は比較により成り立つという点、そして数値とグラフの取り扱いが肝要であるという点です。 課題解決の秘訣は? また、自己の課題として、筋の良い仮説立案力を磨く必要性を強く感じました。そのため、幅広い関心を持ち、数多くの因果関係に触れることが重要だと捉えています。データ分析は、実際に因果関係を紐解く作業であり、社会に潜むさまざまな関係に目を向けることで、自然と論理的かつ効果的な仮説立案感覚が養われると実感しました。

データ・アナリティクス入門

既成概念を超えた発想のヒント

柔軟な発想って何? 既存の考えにとらわれず、引き出しを増やすことが仮説を立てる上で非常に重要だと感じました。 仮説の枠組みは? 3C分析や4Pの概念は耳にしたことがありましたが、実際に仮説を立てる際には意識できていなかったと気付きました。そのため、いきなり案を考えるのではなく、まずどのように考えるべきかを整理する必要性を実感しました。 どう顧客に寄り添う? また、離職者を減らすアプローチや、顧客の課題分析の際に、改めて3Cや4Pの考え方を取り入れる意欲が湧きました。さらに、顧客が自社の分析に必要なデータの種類や、適切な集計方法を提案する際にも、この視点を応用していきたいと思います。

データ・アナリティクス入門

仮説が切り拓く未来への一歩

仮説構築で深まる知見は? 仮説を立てることで、課題が具体的に明確になり、さまざまな角度から検討することでさらに深堀りできることを学びました。3Cや4Pといったフレームワークを実務に活かせば、より効果的に仮説を構築し、その検証まで結びつけることができると感じました。 進捗不振の課題再考は? また、売上の進捗が思わしくなかったり、プロジェクトの進行が円滑でなかったりする漠然とした課題に対しても、仮説構築から改善策の立案まで一連の行動を実践できると実感しました。考えられる仮説をもとに関係者と共有し、次のアクションを検討することで、課題に対する立て直しの機会が生まれると考えています。

データ・アナリティクス入門

実践!多角的視点で考える仮説力

どの切り口から考える? 仮説を立てる際は、「ヒト、モノ、カネ」といった複数の切り口から検討するよう意識しています。最初は「しっくりこないけどこれっぽい」という回答に終始してしまいがちでしたが、実はこれは「なんとなく」仮説を立て、意識的に体系化して思考できていなかったからだと気づきました。 検証の順序は合ってる? また、課題に取り組むとき、すぐに思い浮かぶ仮説や、データが集めやすい仮説に飛びついてしまったことを反省しています。一度、様々な角度から出した仮説を並べ、順に検証していくというステップを大切にすることで、より論理的で確固たる仮説立てと検証ができるようになりました。

データ・アナリティクス入門

疑問とメモから生まれる成長

売れなかった理由は? 営業の現場で長年経験を積むと、なぜ今日売れなかったのか、何が顧客に対して良くなかったのかといった疑問が浮かぶことが多くなります。こうした考察をそのままメモに記録することで、問題意識を持ち、仮説思考へと展開できると感じています。一方で、十分に検証できていない点が自分にとっての課題であるとも思いました。 検証と成長の道は? 日々の気づきをメモし、AIなどのツールを活用して要点を整理する。そこから見えてくる仮説に基づき、1ヶ月、2週間、あるいは毎日という期間で検証のスピードを上げ、実践していきたいと考えています。

データ・アナリティクス入門

疑問から始まる探究ストーリー

どう仮説は組み立てる? 仮説を立てる際には、さまざまな視点、すなわち異なる背景や経験を持つ人々からの意見が必要であり、MECEな仮説を構築する上で重要であることを理解しました。また、日常業務で自社や自部門の課題に目を向け、そこでの仮説立案を習慣化することの大切さも認識しています。 なぜ現象を疑う? そのため、業務の中で起こる現象やデータに対して「なぜこのようになるのだろう?」と疑問を持ち、一歩踏み込んで考察する姿勢を身につけたいと感じています。

「課題 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right