アカウンティング入門

数字で見える!経営の新たな視点

損益計算書の基本的な読み解き方を学ぶ 損益計算書の基本的な読み解き方を学び、これまでの『営業利益・利益率』だけでなく、経常利益や当期純利益なども比較しながら、会社経営全体の状況を理解することができました。 サプライヤ分析で何を理解する? この知識を活かして、業務上でサプライヤ分析を行いたいと考えています。具体的には、担当するサプライヤのP/L分析を通じて、事業構造をより深く理解していきます。分析においては、売上規模、営業利益、営業外利益・費用、経常利益、当期純利益といった項目ごとに詳細に読み解いていくつもりです。 数字から何を創造する? さらに、分析力を身につけることで、数字から事業の特徴や課題を創造できるようになりたいと考えています。競業他社や自社、さらにはサプライヤのP/Lを比較分析し、それぞれの特徴を把握することで、研究開発に力を入れているか、営業外費用がかかりすぎているかなどの仮説を立てる習慣をつけていきたいです。

データ・アナリティクス入門

3C×4Pで解く故障改善の秘密

複数視点って何が肝心? 修理データの分析では、仮説構築の際に一面的な見方にとらわれず、複数の視点から網羅的に考えることが不可欠です。今回学んだ3C(顧客・自社・競合)や4P(製品・価格・流通・販促)のフレームワークを活用することで、故障原因や改善のポイントを多角的に把握できるようになりました。 故障原因はどう見える? たとえば、顧客視点では使用環境や年齢層による故障傾向が考えられる一方、自社視点では特定の機種や部品の設計上の課題に着目できます。また、競合視点では他社製品との比較による違いを仮説にすることも可能です。さらに、製品ごとの故障率や価格帯、販売地域ごとの傾向にも注目し、それらを関連付けながら仮説を検証していくことが求められます。 課題解決の鍵は何? このように、フレームワークを効果的に活用しながら問題解決に取り組むことで、修理データに潜む課題をより具体的かつ明確に把握することができるようになりました。

データ・アナリティクス入門

悩みを力に変える仮説の魔法

どんな仮説を作る? 普段は問題意識や論点の着目はできるものの、その先の進め方に悩むことがあり、課題から仮説につなげるのに苦手意識を抱いていました。しかし、3Cや4Pを活用することで仮説の立て方を理解でき、今後はより具体性のある仮説を構築できるよう努めたいと感じています。 新たなデータはどう? また、これまでは既存のデータだけで答えを導く方法に頼っていたため、仮説の裏付けとして新たなデータを収集する発想がなかったことに気づかされました。今後は情報が偏らないよう注意しながら、必要なデータを積極的に取りにいく姿勢を身につけたいと思います。 どう説得力を出す? 売上に関しても、なぜこのような結果になったのか説明が十分でなかったため、まずは結論を支える仮説を立て、その裏付けとなるデータを取りに行くことで、より説得力のある説明ができると感じました。普段から問題意識を持つことで仮説の具体性が増し、分析の視野が広がると実感しています。

データ・アナリティクス入門

多角的視野で見るデータの魅力

仮説はどう広げる? 他部署の課題解決におけるデータ分析では、検討すべき切り口が多数存在することを意識し、決めつけることなく幅広い仮説を立てることが重要です。データを俯瞰的に捉え、各特性に合わせた代表値を用いながら、偏らない分析を心がけています。 比較軸はどう選ぶ? また、データ分析は比較を軸に、代表値とばらつきを見ることが基本です。集めた関連データから正確な傾向を把握し、単一の視点に陥らないよう、複数の見方を試みています。 分かりやすく伝える? さらに、分析結果を相手に伝えるためには、理解しやすい可視化が欠かせません。それぞれの人が異なる意見や感じ方を持つことから、相手の立場を尊重しながら意見を交えた説明を心がけています。 経験は視野を広げる? 今まで参加したグループワークや講義での交流を通じ、データの見方や可視化の手法は多様であると実感しました。その経験をもとに、柔軟な視点で課題に取り組むことができています。

クリティカルシンキング入門

データ分析の新しい視点で業務改善へ

グラフを活用したデータ分析の重要性 分析においては、数字だけを見ずにグラフにするなど、視点を変えることが重要です。絶対値だけでなく比率などの相対値も分析し、複数の区切り方や切り口でデータを分解したうえで、それらを複合させて検討する必要があります。これらを怠ると、正しい課題や仮説にたどり着かない可能性が高くなります。 新たな視点の必要性とは? 私は、自身の業務において組織や顧客のデータから傾向や課題を分析する際に、複数の区切り方や切り口を見直していないことがあると感じています。そのため、これまでの区切り方や切り口以外に、何か新しい視点がないかを改めて考えてみたいと思います。 定例会議での効果的な課題分析法 現在、月に一度の定例会議で自社と取引先企業との間で課題の分析と対応策を議論しています。分析は自社で行うため、データの区切り方や切り口、グラフの見せ方を再検討し、仮説を誤らないように資料全体を見直すことが必要です。

データ・アナリティクス入門

仮説から始まる発見の物語

なぜ振り返りするの? これまでの学びを総まとめする中で、問題解決のステップと仮説志向の重要性を再認識しました。一見当たり前に感じることも、改めて意識することで新たな発見があると実感しています。また、他の受講生の意見に触れることで、自分のアプローチに不足している部分を確認することができました。 有意な検証方法は? もともとの課題として、A/Bテストにおいて有意差が出る仮説を立案する必要があるため、「要素は一つ」「同じ期間で同時に」という基本に加え、仮説を明確にすることを意識したいと考えています。そのため、フレームワークを活用して仮説の幅を広げる取り組みも進めています。 効果的な施策は? さらに、自分が実施するキャンペーンにおいて、コンバージョン向上のために検証すべき仮説をフレームワークを使って洗い出し、その中で最も効果が見込める仮説をもとにキャンペーンを実行・検証するサイクルを繰り返していくことが今後の課題です。

データ・アナリティクス入門

比較で見つけた戦略のヒント

同条件で比較する? 分析とは、同じ条件下での比較を行うことだと思います。たとえば、「Apple to Apple」の視点で比較を行うことで、分析の目的やゴールが明確になり、結果の精度も向上します。また、分析を進める際は、仮説を立てることで、目的外の迷いに陥らずに進められると感じています。 ブランディングはどう? 現在、私はプロダクト開発とコンテンツ企画・運営に携わっており、いずれも競合が存在する中で、自社のブランディング戦略を考える必要があります。ただ、現状ではプロジェクトオーナーの感覚や経験に頼る部分があり、より現実的かつ客観的な視点を取り入れる余地があると感じました。 課題整理は進んでる? そこで、まずは各プロジェクトの目的とゴールを再整理し、現時点での課題を明確にすることが重要だと考えています。その上で、適切なフレームワークやツールを活用した分析を行い、より精度の高い戦略策定を目指していきたいと思います。

データ・アナリティクス入門

実践で磨く!データ活用のヒント

学びはどんな感じ? これまでの学習を通じて、データ分析の基礎から実践的な活用方法まで、一連の流れを体系的に学ぶことができました。単なるデータ処理にとどまらず、どのように課題を設定し、仮説を立て、検証するかという思考プロセスの重要性を改めて実感しました。 重要な点は何? 学習内容を振り返る中で、自分にとって重要なポイントを再確認することができました。今後は、業務の提案文書作成時に、分析を活用して根拠を明確に示す取り組みを進めたいと考えています。また、日頃から目にするデータがどのように役立つかを意識する習慣を身に付けたいと思います。 次への一歩は? さらに、知識の定着を図るため、学習を終わらせずに統計検定の取得を目指すとともに、業務での分析においては各種フレームワークを適用し、実践で活かしていきます。具体的には、営業店の業務負荷の要因分析を実施し、仮説を立ててデータに基づく検証を行いたいと考えています。

データ・アナリティクス入門

仮説検証で開く課題解決の扉

本質はどう捉える? 問題解決プロセスでは、「何が問題なのか(what)」「どこに原因があるのか(where)」「なぜその問題が発生しているのか(why)」の3点に対して、徹底的に検証することが重要であると学びました。 原因をどう探る? また、whyの部分については、3Cや4Pといったフレームワークを活用することで、より具体的な原因の特定と分析が可能になることが印象的でした。各アプローチにおいて、仮説を立て、既存または新規のデータを用いて検証する作業が鍵であると感じています。 新たな視点は? 特に、売上データの結果は複合的な要因が重なっており、一概に原因を絞るのは難しいという現実があります。それにも関わらず、自分なりにここが原因だろうという仮説を立て、検証を通して新たな視点や解決策につなげることの重要性を実感しました。今日学んだフレームワークを活用しながら、今後もさまざまな課題にチャレンジしていきたいと思います。

データ・アナリティクス入門

仮説思考で変わるサポートの未来

仮説思考は何が変わる? 仮説思考を学ぶことで、業務に対する課題意識がより明確になったと感じました。単に仕事をこなすのではなく、仮説をもとにトライアンドエラーを重ねることで、目的に一歩ずつ近づけるという実感が得られました。 サポート満足の理由は? 現在の課題として、クライアントのサポートに対する満足度が低い原因は、製品の不具合ではなく、返信までに要するリアクション時間やサポートサイトの分かりにくさにあるとの仮説を立てました。この課題に対して、改善策を検討し実施していく決意です。 フィードバック改善案は? また、クライアントからのサポートフィードバックを年に一度にとどめず、より頻繁に意見をいただけるようにすることで、現状の把握と対応の質を向上させたいと考えています。問い合わせが多い項目については、サポートサイトを見直しアップデートするほか、検索しやすいキーワードの設定も改め、利用しやすい環境の整備を目指します。

クリティカルシンキング入門

思考の偏りを超えて進む方法

適切な思考法を身につけるには? 何かを考える際には必ずバイアスがかかります。これを避けるために、適切な思考法を身につける必要があると実感しました。仕事の場面でも、自分の考えやその内容が網羅的で適切なのか、常に確認する必要があると感じています。クリティカルシンキングを学ぶことで、各タスクにおける抜け漏れを防ぎ、本質的な課題や論点について深く考えられるようになりたいです。 クライアント課題の本質に迫るには? 特にクライアントの課題を解決する際には、表面的な問題だけでなく、本質的な課題は何かという問いを常に考え、それを行動に移せるようになりたいと考えています。また、思考の偏りを避けるために、適切なロジカルシンキングの方法を身につけたいです。 仮説を改善し続けるために さらに、常に自身の仮説を改善するポイントがないかも考え続け、短絡的な思考に陥らず、網羅的にかつ本質的な問いを常に考えられるようにしたいと思います。

データ・アナリティクス入門

ビジネス課題を解き明かす仮説思考の力

仮説の分類とは何か? 仮説の分類という概念を知らなかったため、この考え方は非常に参考になりました。ビジネスにおいて重要な課題であるコミュニケーションと問題解決を、時間軸を用いて分類し、仮説を立てる思考法は大変勉強になりました。 仮説思考を活動方針にどう活かす? 現在、来期の活動方針を策定しており、今回学んだ仮説思考を活用したいと考えています。前々期、前期、今期のデータを比較することで、売上に課題がある製品とその属性(新製品か定番品か、製造コストなど)を基に、改善計画を提案できるのではないかと考えています。 売上課題の仮説をどう立てる? 具体的には、売上における課題についていくつかの仮説を立ててデータを比較してみる予定です。例えば、①売上金額が減っているのか、②粗利率が下がっているのか、といった課題の内容を明らかにし、更にその課題が発生している要因について仮説を立てて掘り下げていく作業を行う予定です。

「課題 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right