クリティカルシンキング入門

データ分析で見つける課題のヒント

課題をどう発見する? 本講座で、課題(イシュー)を特定するプロセスについて学びました。これまで、最終的に解決すべき問題が何であるかを自分の先入観や仮説だけに頼って考えていたように思います。今後は、各種データを様々な角度から分析し、その結果をもとに課題を特定する作業に慣れる必要があると感じました。 販売計画をどう分析? 具体的には、ソリューション販売計画の策定に取り組む際、この手法を活用しようと考えています。たとえば、ある製品について「売る」「売りたい」といった単一のキーワードだけではなく、現状や市場、価格など複数のキーワードを抽出してデータ分析を行い、さまざまな切り口からイシューを探索する方法です。 意見交換は効果的? さらに、大きな課題に対しては、課題を細分化したキーワードに分解し、各キーワードに対応するデータを揃えることで、より具体的なアプローチが可能になると実感しました。加えて、同僚の意見を積極的に求め、ディスカッションを通じて個人的な偏りを排除することが、より客観的にイシューを特定するために重要だと感じています。

データ・アナリティクス入門

仮説力が拓くあなたの未来

仮説をどう検証する? 仮説を検討する際は、決め打ちせずに複数の仮説を出すことが大切です。加えて、それぞれの仮説が補完し合い、異なる視点からの切り口を持つことを意識しています。自分の知見や簡単な検索だけに頼らず、3Cや4P分析などのフレームワークを活用することで、より精度の高い仮説が構築できると改めて実感しました。 提案の鍵は何? また、担当しているお客様に提案を行う際には、企業が抱えるビジネス課題やそれに対してどのような提案が有効かを日々考えています。しかし、時間の制約からホームページや業界情報の簡単な調査だけで済んでしまうこともあるため、本講座で学んだフレームワークを活用し、複数の仮説を立てる基本に立ち返ることを意識しています。 問題解決の秘訣は? 特に、問題解決のための仮説設定プロセスが非常に有効であると感じました。問題は何か、問題の程度はどれほどか、どこに原因があるのか、なぜその問題が発生しているのか、そしてどう対応すべきかという一連のプロセスをしっかり分けることで、仮説思考をより深めることができると考えています。

デザイン思考入門

暗黙知で切り拓く学びの未来

どうして暗黙知が重要? 観察を通して得られる暗黙知と、インタビューで収集する形式知という分類に非常に興味を持ちました。本人が気づいていない、または言語化が困難な潜在的な課題というものは意外と多く存在するため、実体験がそれらの発見に大いに役立つと改めて実感しました。 仮説を疑う意味は? また、仮説にとらわれず、フラットな視点で観察やインタビューを行うことで、本質に近い課題を発見できるというアプローチにも魅力を感じました。一般的なインサイトよりも、特定の具体的なインサイトに焦点を当て磨いていくことに価値があるという考えは、普遍性を求めすぎないデザイン思考の特徴ともいえます。 バランスはどのように? さらに、全体と個、暗黙知と形式知など、対照的な要素のバランスをどのように取るかという点にも大きな学びがありました。とらわれないというキーワードは、これまでの自分の発想とは異なるアプローチを意識する上で、非常に重要な考え方だと思います。未知のものや違うものに敏感になることで、より高い精度のデザイン思考が実現できると感じました。

データ・アナリティクス入門

WHYを追う!仮説×データの挑戦

仮説検証で何が分かる? ライブ授業では、WHAT⇒WHERE⇒WHERE⇒HOWの順番に沿って、適切な仮説を基にデータ検証を行う重要性を再認識しました。以前学んだクリティカルシンキングにおける問題解決のステップと共通点が多く、両者の関係性がよく理解できました。仮説検証のプロセスにデータ分析を組み合わせることで、より良い課題解決や提案が可能になると感じています。 内部監査にどう活かす? この考え方を、私自身の内部監査業務にも取り入れ、問題の核心に迫る質の高い改善提案を実現したいと思います。特に、これまであまり重視してこなかったWHYの分析については、今後、的確に問題の真因を把握するために、重点的に実施していく予定です。 MECEで本質をつかむ? また、課題に対して決めつけず、全体をMECEの視点で捉えながら不要な部分と深堀が必要な部分を明確に区別したいと考えています。深堀が必要な箇所については、改めてWHAT⇒WHERE⇒WHERE⇒HOWのステップを踏み、考えを可視化して説明できるよう努めることが大事だと実感しました。

データ・アナリティクス入門

論理で切り開く自分革命

状況整理の意義は? 直面している状況を具体的に整理し、何が問題なのかを明確にするプロセスが非常に役立ちました。特に、あるべき姿(To be)と現状(As is)のギャップを定量的なデータをもとに洗い出すことで、客観的に問題点を把握できるようになったと感じます。 課題の対処法は? 何から取り掛かるべきか迷ったときは、What(何が)、Where(どこで)、Why(なぜ)、How(どうやって)のステップを参考にすることで、論理的に整理しながら課題にアプローチできました。たとえば、収支の問題に直面した際は、売上と費用に分けてどこに課題があるのかを、ロジックツリーを活用して可視化する手法が有効でした。 学びや実感は? また、クライアントが提示する課題が本当に解決すべき問題であるかを見極めるために、内部の上位者とのディスカッションを通じて仮説を壁打ちする機会が持てたことは、より良い提案や新たな切り口を考える上で大いに学びとなりました。これらの経験は、問題解決の手法の幅を広げ、実務における対応力を高める大きな糧となっています。

データ・アナリティクス入門

問題発見力を鍛えよう!課題形成の基本

問題発見力を高めるには? 問題を発見し、その問題点を把握する力、すなわち問題発見力が重要です。ありたい姿と現状のギャップを見える化し、課題形成力を高める必要があります。現状を定量的・定性的に把握するためには、数値化や見える化が欠かせません。目的や仮説をイメージしつつ、行ったり来たりしながらも、ゴール目標に向けて時間軸を持って到達することが大切です。 採用市場で競争優位を得る方法は? 採用市場の変化においては、問題発見と課題形成のプロセスが重要です。この過程で優先度や重点化の思考を入れ、重要性や緊急性の観点からもデータを分析します。それによって、競合他社との優位性を評価しながら、効果的かつ先進的な人材獲得の取り組みを推進することができます。 幸せのため働く姿勢の意義は? 「誰かの幸せのために、まっすぐはたらく」という考え方を体現し、シンプル、オープン、フェアの観点から積極的に採用市場を分析します。将来の基幹人材の獲得を目的に、ゴール(6月)から逆算してセグメントごとの実行計画を立案・推進することが求められます。

データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

デザイン思考入門

柔軟な視点で未来を拓く

なぜプロダクトアウトはリスク? 無意識にプロダクトアウトに偏った仮説を立てたり、収集したインタビュー結果から都合の良い回答だけを抜き出してしまうリスクについて学びました。自分の業務でも、マニュアルやルールに沿って考えがちですが、大切なのは相手の立場に立った提案を行うことだと感じています。 山と悩みの共通点は? また、先日のワークでは、登りたい山やその目的は人それぞれであっても、悩みの本質においては大きな違いがないことが分かりました。作業に取り掛かる前は、個人ごとに登る山や抱える悩みは多種多様だと考えていました。しかし、仮説立ては重要であると同時に、それに固執しすぎない柔軟さも必要であると実感しました。 課題定義は何を示す? さらに、課題の定義については、既存の枠にとらわれず、対極の視点からも考えることが求められると感じています。そのためには、視野を広げ、さまざまな知見を取り入れる努力や、周囲の意見を聞くことが重要であり、個人だけで解決しようとするのではなく、チームとして協力することが望ましいと考えています。

データ・アナリティクス入門

なぜとどうで解く課題の本質

なぜWhyとHowを重視? 今週は、What→Where→Why→Howの流れの中でも、特にWhyとHowの部分に重点を置いて学習しました。問題解決のプロセスとして、まずプロセスを細かく分解し、その問題に至る各課題について、なぜその状況に至ったのかを仮説を立てながら考える手法が印象に残りました。 なぜ原因を深堀? また、複数の原因を明確な根拠に基づいて絞り込むことが、問題の本質を理解する上で非常に大切だと感じました。実務においても、売上やサイト訪問数などの行動変容と、認知度や利用意向といった態度変容の両面から施策を検証し、その結果に対してなぜ売上が伸びたのか、認知度が上がったのかと、丁寧にプロセスを分解することの重要性を再認識しました。 なぜ多角的検証? さらに、施策の結果をすぐに結論づけるのではなく、各プロセスを細かく見直し、仮説に基づいて多角的な切り口で施策を検討する姿勢が大切だと感じました。そのため、A/Bテストや簡易調査などを定期的に行い、施策の効果や課題を可視化して検証することが求められると学びました。

アカウンティング入門

企業体質を見抜くバランシート解析の旅

バランシートから何が見える? バランシートを学ぶことで、企業のお金の使い方や集め方についての全体像を理解できるようになります。各勘定項目を完全に理解する必要はありませんが、各ブロックのバランスを見て負債が多すぎないか、倒産のリスクがないかを推測することが可能です。 自社分析はどう進める? まず、自社や担当する取引先のバランシートを確認し、企業の体質の差を分析してみます。次に、事業内容や規模から資産内容について仮説を立て、固定資産が多いのか、流動資産が多いのかを考えます。負債の割合が多い場合、その背景や理由を事業内容と照らし合わせて予想します。 仮説立ては何のため? この研修の目的は、自社や取引先の事業体質や課題を理解することです。自ら仮説を立てて答え合わせを行う作業を中心に進めます。バランシートを読み解き、各取引先の特徴を把握します。また、取引先の事業内容を詳しく調べ、バランシートの分析結果と照らし合わせます。そして、取引先と面談する際には、仮説について可能な範囲でヒアリングし、答え合わせをして認識を修正します。

データ・アナリティクス入門

比較と分析で拓く学びの未来

目的は明確ですか? 分析を始めるにあたって、まず目的と最終ゴールを明確に設定することが重要です。これにより、次に行う比較対象の設定や分析手法の習得がスムーズに進み、上席が判断しやすい情報を提供できるようになります。 比較で何が分かる? 分析の本質は比較にあり、対象を明確にすることが成功の鍵となります。現状では、課題に対する意識はあるものの、十分な分析ができていなかったり、仮説はあるものの分析に着手する時間が取れないという状況が見受けられます。しかし、単に課題を解決するのではなく、事業全体の改善を目指し、情報公開や信頼獲得、認知拡大、ブランディングへとつながる流れを作ることが求められています。 分析の仕組みは? そのため、まずは言語化や情報整理、データ収集と集約を丁寧に行い、その上で効果的な分析を実施する仕組みを確立する必要があります。私のミッションは、組織内の情報を安全に集約・整理し、課題や仮説を明確にした上で、比較対象となる市場の情報と合わせた総合的な分析を行い、意思決定のために適切な報告体制を整えることです。

クリティカルシンキング入門

データ分析で実感した新たな視点の必要性

刻み幅の切り方はどう? データの傾向を把握するためには、「刻み幅の調整」が重要です。刻み幅によって、データの分布がどのように見えるかが変わるため、機械的な方法ではなく、どのように切ることで特徴が見えやすくなるかを仮説を立てて試みることが大切です。また、手元にある情報だけで判断すると視点が偏りがちなので、目的意識を持つデータ取得も必要です。 アンケート設計はどう進める? 今後、アンケート調査などを設計する際には、データの切り分け方を検討する際に役立てたいと思います。課題や事象の分析では、解釈の羅列ではなく、観点となる切り口を意識して情報を分解し構造化することが有効です。A for not Aの発想も活用できます。 定性情報はどう扱う? 業務においては、定性情報の示唆を分析する局面が多くあります。具体的には、プロジェクトのボトルネックの特定や、意思決定に影響を及ぼす要素の分析において役立てたいと考えています。ただし、定性情報を分解する際には、MECE的発想が必要かどうかを見極めたうえで活用することが重要となります。

「課題 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right