マーケティング入門

多角的学びで経営に挑戦

提案はどう説得する? マーケティングプランを加えた提案は、納得感を高めると実感しています。さらに、ファイナンスやアカウンティングなどで全体の状況を網羅することで、意思決定者の立場からの提案が可能になると感じました。 データは十分かな? マーケティングは顧客重視のため、定量化が難しい面があります。そのため、データの収集と分析力を向上させる経験を積む機会を大切にしていきたいと思います。 業務提案はどう見る? 新規業務提案にもこの考えを活かし、将来的な起業も視野に入れた上で、短期と長期の仕組み作りを重視します。大手の事例だけでなく、中小企業の成功例や失敗例にも学ぶために、書籍や動画サービスを通じて継続的に情報を取り入れる習慣を続けていきます。 書籍の読み方は? また、購入した書籍は全て読むのではなく、目次やダイジェストを参考にして本質を見極め、必要な部分を深く読み込むように工夫します。グロービス終了後も、時間を有効に活用して学習を継続し、部署内でのアウトプットの機会を通じて知識の定着を目指します。

クリティカルシンキング入門

客観思考で挑む原因究明

客観視できていますか? 主観的な判断を排除することの重要性を学びました。私たちの思考には必ずしも客観的な視点が備わっているとは限らないため、答えが導かれた後も「なぜその結論に至ったのか」「本当に正しいのか」を問い続けることが大切だと感じました。 他の原因も見えてますか? また、仕事で問題が起きたときに原因を明確にする際、この考え方が役立つと実感しています。すぐに原因と思われる事象に気が付いたとしても、他にどんな原因が存在するのか、なぜその事象が発生したのか、定量的なデータを用いて誰が見ても納得できる説明ができるかを念入りに考える必要があります。 多角的に考えていますか? さらに、問題発生時には、客観的な判断に必要な情報をリストアップし、思考が一面的にならないように努めています。ロジックツリーを活用して原因を深堀りし、上位者や他部署の視点からもチェックを行うよう心掛けています。最後に、取り組んだ結果を振り返ることで、次の課題解決に向けた改善策を見出す重要性を再認識しました。

アカウンティング入門

企業を深く知る!新視点の財務分析

なぜ財務表を学ぶの? ライブ授業では、ある企業の事例を通して、財務諸表を詳しく見ることの重要性を学びました。これにより、損益計算書や貸借対照表の理解を深めることができ、この1か月以上の学びを振り返り、今後の学習方法についても考えることができました。 どうやって企業理解? まず、顧客企業の財務分析においては、企業のホームページや採用情報、関連出版物、さらにはヒアリングを通じてそのビジネスモデルをしっかり理解していきたいと思います。これによって、単なるテンプレートに基づく定量分析ではなく、具体的に何を分析したかが明確になるような分析が可能になると考えています。 仮説検証の流れは? 次回定量分析を行う際には、まずデータを収集するのではなく、企業のホームページや採用ページ、出版物をもとに、企業の人員構造や財務状況について仮説を立ててみます。その後、この仮説を検証するために定量分析を実施し、特に仮説と異なる結果が出た場合には、顧客への報告時に質問や議論を重ね、理解を深めていく予定です。

データ・アナリティクス入門

未来を切り拓く問題解決力

ステップで何が分かる? 問題解決のステップ「What」「Where」「Why」「How」を意識することで、頭の中を整理し、分析を実施しやすくなります。直感的に何が問題でどのように解決すべきかを考えがちですが、この手順を踏むことで、問題の本質を的確に捉え、解決策を導きやすくなります。 理想と現実はどう違う? また、あるべき姿と現状とのギャップを定量的に示すことも非常に重要です。 企画策定はどう進む? たとえば、規程の改正やガバナンスの運用に関する企画を策定する際には、企画の目的や解決すべき問題を問題解決のステップに沿って整理します。そして、あるべき姿と現状とのギャップを定量的に示すことで、企画の意義が伝わりやすくなり、賛同を得やすくなります。 スピードと注意点は? 常に問題解決のステップを意識し、問題の本質を見極める力を養うとともに、課題を示すデータが整っているか確認することが大切です。一方で、業務のスピード感も求められるため、事前の分析が過剰にならないよう注意が必要です。

戦略思考入門

可能性を活かすための戦略的思考

物事を捨てる選択は正しいか? 戦略的に物事を捨てることの重要性を再認識しました。業務において「捨てる」という選択は、可能性を手放すことと同義になる場合もあります。しかし、実践演習で経験したように、ROIなどの定量的指標を用いて優先順位をつけることが重要だと感じました。 顧客の優先順位をどう付ける? 実践演習で学んだ内容を活かして、顧客の優先順位付けを行い、どの顧客を優先的に訪問することで営業利益を最大化できるかを考えたいと思います。これまでは、過去の売上や顧客の規模で大まかに仕分けをしていましたが、今後は他の数値を参考にしながら、ROIを高めるために組織運営を進めていきたいと考えています。 データ分析で得られるものは? 数値分析を進めるにあたり、社内でどのようなデータが利用可能か、またどのように計算できるかを一次情報に基づいて分析したいと思います。さらに、現在行っている業務やサービスを洗い出し、無駄や不要なものが残っていないかをゼロベースで再検討していきたいと考えています。

データ・アナリティクス入門

データと仮説で切り拓く未来

原因は何でしょう? 問題を解決するためには、原因をプロセスごとに分解して明らかにする方法が効果的だと実感しました。広告にかかる費用と表示回数だけで費用対効果を計算しても、課題解決には至りません。しかし、クリック数や申し込み数といったデータを加えて各割合を算出することで、具体的な解決策のヒントを得ることができました。 A/Bテストはどう? また、業務では主に定量分析や可視化を中心に行っているため、これまで触れる機会の少なかったwebマーケティングで活用されるA/Bテストについて学べたことは非常に新鮮でした。 仮説、どう作る? さらに、日々の業務でデータ分析や問題解決を行う際、どうしても過去の経験や周囲の意見に基づくストーリーに頼ってしまい、データ活用が十分にできていなかったことに気付きました。今後は、「What」「Where」「Why」「How」の各ステップや様々なフレームワークを活用した仮説の立案を取り入れ、より効果的な解決策を模索していきたいと思います。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

データ・アナリティクス入門

仮説検定で見える本当の事実

データ比較の工夫は? 定量分析に取り組む中で、表面的な分析だけではビジネスの現場で活用できないという事実を改めて認識しました。より効果的な仮説検定を行うためには、どのデータと比較するかを十分に考える必要があると痛感しました。 複数比較のメリットは? たとえば、ある一社のデータに依存するのではなく、複数の企業のデータを並行して比較することで、検定の信頼性が高まります。また、売上高の分析に際しては、単に売上の低下を把握するだけでなく、その原因を探るために仮説を立て、実際に仮説検定を実施するプロセスが重要だと感じています。 情報共有の秘訣は? さらに、普段の情報共有の場においても、前年同月比だけでなく、業種別や地域別の視点で分析を行い、得られた知見をアウトプットする工夫が求められると学びました。 相関関係の本質は? 今後は、相関関係に関する知識をさらに深めるため、より詳しい方の意見をお伺いできればと考えています。

戦略思考入門

ハイエンド顧客を狙った眼科マーケット攻略戦略

顧客分析の重要性を再認識 マクロの視点で顧客を分析することの重要性を改めて学びました。優先順位を定量化することで、新たな注力分野が見えてくることを実感しました。日々の業務や顧客対応に追われがちですが、冷静に分析することで無駄な動きを減らせるかもしれないと考えました。 質重視の顧客ターゲティング 眼科クリニックの開業マーケットでは、総合メーカーのパッケージ提案によるディスカウント競争が激しいです。ただし、提供される顕微鏡の質は必ずしも高くないため、質を重視しない顧客はターゲットから外し、こだわりのある顧客に絞ってアプローチすることが効果的だと考えます。 大学病院戦略の必要性は? そのための提案根拠を定量化するために、外部および内部のデータを収集します。特にハイエンド市場を目指すには、業界で影響力のある大学病院戦略が重要です。大学病院の手術数や関連病院の数などの評価を定量的に行い、優先順位をつけてアクションプランを策定します。

クリティカルシンキング入門

チームの課題発見と解決の秘訣

何を考えるべき? 考えを始める前に、何を考えるべきか、またどんな問い(イシュー)に答えを出すべきかを明確にすることが重要です。問いを具体化し、打ち合わせ中は常にその問いを意識することで、間違った答えや見当違いな答えを避けられます。 進捗はどう把握? 業務の取り組み状況を把握する際には、進んでいるチームと進んでいないチームを比較する必要がありますが、これは単に取り組み状況を定量的に確認するだけでなく、定性的にも捉えることが求められます。特に、取り組みが進まない理由を探る際には、店舗の大きさ、年齢、入社時期など、さまざまな角度から深く分析することが肝要です。 次年度方針はどう? 現在、次年度の方針を策定中ですが、この策定には今年度立てた目標に対する達成状況が影響します。目標の再設定や目標達成のための研修、会議の内容など、過不足を様々な角度からデータを分析し、1年後には自身の成長が実感できるような方針を策定したいと考えています。

データ・アナリティクス入門

多面的な視点で採用戦略を刷新する

多面的な思考の大切さとは? A/B評価の考え方を取り入れて、多面的な思考を心がけたいと思います。品質、コスト、納期、環境、安全の各切り口からプロセスごとに要因分析を行うだけでなく、仮設に関する健全性や生産性、環境適応性といった視点でも考える習慣を持ちたいと考えています。 データの使い分けが成功の鍵? 採用市場に関わるデータについても、定性・定量、生・加工、一次・二次といった種類を使い分けることが重要です。切り口を変えて物事を見つめることで、得られた傾向の意味や仮設の証明に役立て、それを戦略立案(例えば、人材獲得へのプロセス)に反映させたいと思います。 データで採用プロセスを進化させるには? 採用活動やプレ期活動を念頭に置き、現在の採用プロセスの課題抽出と環境変化への早期対応にデータ分析力を活用したいです。この分析を通じて、関係部門の協力を得られる方針や実行計画をブラッシュアップし、組織の財産として残したいと考えています。

「定量 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right