クリティカルシンキング入門

問いが拓く学びの未来

問いの設定ってどう? 常に問いを立て、共有しながら進めることの重要性を改めて実感しました。プロジェクトの課題を議論する際に、まずは明確な問いを設定することが必要だと感じています。自分の考えを具体と抽象の間で行き来させ、多角的な視点から問いに答えることが、より納得感のある具体策の構築につながると思います。 戦略の現状を見極める? 現在、下期戦略の検討段階にあり、あるべき姿と現状との差を比較することで、課題(ISSUE)と対応策(打ち手)をセットで検証するアプローチが効果的ではないかと考えています。チームメンバーともクリティカルシンキングの考え方を共有しながら、どの打ち手が本当に有効かを慎重に検討していくつもりです。 問いメモの習慣は? また、議論の場や面談の際には、必ず「問い」をメモする習慣を徹底したいと思います。日頃のコミュニケーションにおいても、一旦立ち止まってその場の勢いで答えず、3つの視点を取り入れて回答することを心がけることで、より充実した議論ができると感じています。

データ・アナリティクス入門

目的で変わる!正しい分析術

分析の目的は何? 分析というと、どうしても難しい印象を受けがちですが、肝心なのは「何のために分析を行うか」という目的を明確にすることです。比較対象があることで、解決へのステップ―What(何が問題か)、Where(どこに問題があるか)、Why(なぜ問題が起きたのか)、How(どう対応するか)―に沿って検証することができ、チーム内での適切な意思決定へとつながります。 現状はどう把握する? データを用いて現状を整理し、仮説を立てながら次の施策を練る作業は、目的があいまいな場合に迷走しやすくなります。目的と手段が混在すれば、正しい分析ができなくなるだけでなく、最終的なゴールが見えなくなってしまいます。そのため、チーム内で「何のために何を行うのか」を改めて明確化し、共有することが必要だと感じました。 担当は誰になる? また、チームの各メンバーが理解に齟齬を持たないようにし、誰が何を担当するのかをはっきりさせることが、全体の当事者意識を高め、効率的な取り組みに繋がると考えます。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

数字が紡ぐ多角的な気づき

計算方法はどう違う? 他者による分析データでは幾何平均や標準偏差に触れる機会はありましたが、以前は計算式に苦手意識を感じていました。今回、単純平均や加重平均と併せて用いることで、データのばらつきや分布が視覚的に理解しやすいことを実感しました。また、分析結果同士の比較において要素が細分化され、読み解く幅が広がることも理解できました。普段目にするデータの背後には巧妙な仕組みが潜んでいることを再確認し、背景にある意図をより慎重に読み取ろうという意識が芽生えました。 部署ごとの傾向は? 担当しているダイバーシティ推進の取り組みでは、アンケート結果が全社的にポジティブな回答に偏る傾向が見受けられました。しかしながら、ネガティブな回答は特定の部署に偏っている可能性もあります。回答者の部署や性別などの属性に注目することで、異なる視点からの分析が可能になると感じました。こうした多角的な検証を通じ、部署ごとの業務特性やジェンダーバイアスなどの要因が明らかになることが期待されます。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

データ・アナリティクス入門

自分の視点で挑む数字の世界

数字の裏を見る? 数字をただ眺めるだけでなく、何を調べたいのか、どの点が重要かを事前に考える習慣が身についたと感じています。事前にどのようなデータが必要か、どんな情報がありそうかを予測し、仮説を立てることの大切さを、実際の分析を通じて実感できました。 売上の謎は? また、売上の上昇や下降といった大枠だけを把握した後、次のステップとして自ら仮説を立て、複数のデータを組み合わせて検証する練習にも取り組んでいます。データ分析専門のチームが示す資料をそのまま受け入れるのではなく、自己の視点でデータを比較検討することに注力しています。 実践の手順は? 具体的には、以下の手順で実践しています: ① 週明けに発表される週次予約情報や売上実績を前週と比較し、自分なりの考察を深める。 ② 得たデータを企画書に盛り込み、提出する。 ③ これらの実践にあたり、必要なデータの提供をデータ分析チームに依頼してみる。 これらの取り組みを通じ、分析力の向上を実感できています。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

アカウンティング入門

仮説で読み解く利益の秘密

利益の把握はどうなってる? 本業での利益、財務活動後の利益、最終利益といった各利益の数字を通して、経営全体の状態や借金の負担状況などが把握できることを学びました。また、仮説を立て検証するプロセスを通じて、物事をより深く掘り下げることができると実感し、今後は仮説立案の習慣を身に付けたいと思います。さらに、「PL=運動成績表」という表現が非常にしっくりと感じられました。 検証はどのように進む? 具体的には、子会社のPLの変化について自ら仮説を立て、各利益の動向を前月比や前年比で分析、検証していくことを目指します。また、同業他社の比較を通じて、各利益率の違いの背景にある要因を探り、その特徴を明らかにできるようになりたいと考えています。まずは、検証のために用いる分析指標について検討し、同業他社のWEBページに記載されている財務指標を参考に、各社がどの指標に重点を置いているのかを確認。自社との比較を行い、問題点を明確にして改善案の検討につなげていきたいと考えています。

データ・アナリティクス入門

仮説で描く未来の戦略図

仮説整理はどう進む? ビジネスフレームワーク(3C、4Pなど)を活用することで、なんとなくで仮説を立てるのではなく、複数の仮説をMECEに整理できるという認識が得られました。また、仮説には「結論の仮説」と「問題解決の仮説」の2種類があることを知り、仮説に対する考え方が大きく変わったと感じています。 課題解決は何を問う? マーケティング施策の企画段階では、まずお客様の課題が何であるかを明確にし、What、Where、Why、Howのプロセスに基づいた問題解決の仮説思考を用いることで、心に響く施策を考案したいと考えています。一方、振り返りの際には、施策の結果を踏まえた上で結論の仮説を用い、データを検証していくことが重要だと感じました。 計画実行はどう見る? 今年度の施策の振り返りと来年度の計画を進める時期にあたり、初めからデータを集計するのではなく、まず仮説を立て、その検証に必要なデータを収集・比較分析するアプローチを取り入れていきたいと思います。

データ・アナリティクス入門

キャンペーンを成功に導く効果検証術

キャンペーン効果をどう活かす? キャンペーンの効果検証に生かすことができると思います。これまで効果検証を次の施策や会社の計画に反映できていないことが課題でしたが、キャンペーンの結果を本講座の分析法で分析し、そこから見えてくる考察を基に新しい取り組みを提示したいと思います。 商品性の比較はなぜ必要? また、現在部署で新規事業の検討を行っております。その商品性の検討に際して、他社商品を比較することが必要です。分析を行うことで、商品性に取り込みたい要素や難しい要素を明らかにすることができると思います。 課題解決に向けた具体策は? これらの課題に対し、次のことを行っていきたいです。 - WEEK1で学んだ内容の共有 - 分析対象となるものの選定 - 比較対象のピックアップ WEEK1で学んだことは既にチームメンバーに共有しており、メンバー全員が納得した内容でしたので、今後も新たな気づきを共有し、実践の場で活用していきたいと思います。

データ・アナリティクス入門

データで読み解く解決ストーリー

なぜ原因を分解した? 総合的演習では、原因を一つひとつ分解し、必要な要素を紐解いていくプロセスを体験しました。分析作業では、何を比較するのか、またその比較からどのような意味合いや関係性が浮かび上がるのかを考察しながら、目的を明確にし仮説を立て、データによる検証のループを実感しました。 どのステップが有効? また、演習では課題解決のためのステップについて認識を深めることができました。具体的な状況を想定して仮説を設定し、分析内容をストーリーのように組み立てる過程は、プロセス全体を含めた納得感のある解決策となると感じました。こうした流れであれば、職場で共有しても十分に理解を得られると思います。 データで何が分かる? 現状分析においては、データの変化や数値の比較からどのような意味合いが導かれるのかを整理することが大切です。また、問題の原因や理由については、経験や感覚に頼るのではなく、データというエビデンスをもって示すことが求められます。

「比較 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right