データ・アナリティクス入門

分解で掴む業務改善のヒント

どこにボトルネック? 問題の原因を明らかにするには、業務プロセスを分解して、どの段階にボトルネックがあるかを特定することが重要だと学びました。実務ではインターネットを活用した営業を行っていないため、A/Bテストは実施しませんが、同一期間・同一条件下で検証項目を比較するという手法は、他の場面でも十分に応用できると感じました。 セグメントはどう見る? 自部門で伸び悩んでいる事業についても、まずは問題の原因究明に取り組み、適切な対応策を検討する必要があると考えています。そのため、部門内で営業セグメントごとに実績を分析し、各セグメントの問題点を洗い出した上で、具体的な対策を立案・実施し、再度分析するというサイクルを構築したいと思います。 対策はどう実施? 具体的には、3月末時点でのセグメント別業績データをもとに、前年度と当年度の成長率を比較します。低迷しているセグメントについては、問題の原因を徹底的に分析し、翌年度に向けた対策をまとめ実行します。その後は、各四半期ごとに進捗を検証し、現状を把握するとともに、必要に応じて追加の対策を講じるという業務改善の仕組みを根付かせることが目標です。

データ・アナリティクス入門

見落としがちな分析のコツ

目的は明確ですか? 目的を早く達成したいという思いから、必要な分析がおろそかになってしまうことがあることを実感しました。その主な原因は、目的そのものの解像度や比較方法の適切さに欠けている点にあると再認識しています。 appletoappleの壁は? 特に、いわゆる「apple to apple」の分析が重要である一方、その実施の難しさを強く感じました。短期間で結果を求める傾向は、判断に必要な深堀りを妨げる要因となっているといえます。 投資判断を見直すべき? また、ファンドの投資判断、景気動向の予測、予算の設定、投資先のモニタリングから得たインサイト、そしてポートフォリオのパフォーマンス検証において、これらの分析手法を活用する意向です。過去の実践において、目的の解像度や視点が十分ではなかった可能性があるため、改めて見直す必要を感じています。 バイアスなく比較するには? このような状況から、どのような方法やツール、そして比較対象を選定すれば、バイアスなく「apple to apple」の比較ができるのか、具体的な事例に基づかない形で皆さんの意見をぜひお聞かせください。

データ・アナリティクス入門

数字で見つける仮説と検証の旅

データ検証の重要性は? 総合的な演習を通じて、データをもとに仮説を立て、その後検証する一連のループを体験できました。単に数字を見るだけでなく、What、Where、Why、Howといった視点を意識してストーリーを組み立てる重要性を実感しました。 A/Bテストのポイントは? また、A/Bテストにおいては、比較対象以外のすべての条件をそろえることが非常に重要であると学びました。この考え方は、売上が変化した原因や理由を、経験則ではなくデータに基づいて示す際に大変役立つと感じました。 仮説検証の飛躍は? さらに、仮説から検証への流れを飛ばして結論に至ってしまう傾向があるため、他の可能性や選択肢がないかどうかも十分に検討する必要があると気づかされました。同時に、キャンペーンや広告の有効度を測る際には、測定したい内容以外の条件を同一にすることの徹底が求められるという点も大切だと感じました。 論理構築はどう? 最後に、分析やストーリー作成においては、What、Where、Why、Howを明確にすることで、より論理的で理解しやすい内容にまとめることが可能になると学びました。

データ・アナリティクス入門

データと仮説で磨く解決力

解決策はどう考える? 問題解決のためには、まず原因を明らかにするためのプロセスに分解し、複数の選択肢を立案してから根拠に基づいて絞り込むアプローチが有効です。また、施策の効果を比較しながら仮説検証を繰り返すことで、より的確な解決策へと精度を高めることができます。さらに、データ分析によって問題解決の精度を確実に向上させるため、仮説に基づいたアプローチと新たなデータ収集を組み合わせるという手法も取り入れ、日々その思考を鍛えていくことが大切だと感じました。 仮説検証は何が鍵? 一方、問題解決プロジェクトにおいては実現性を重視するあまり、手軽に実行できる解決策が優先されがちな点に疑問を抱いていました。しかし、仮説検証を通じて得られる新たなデータもまた価値があると認識しています。そのため、事前にどのようなデータ収集や分析が可能かを議論し、リードすることが重要だと考えます。メンバーには、問題解決のステップ全体を共有し、現在の議論がどの段階に位置しているのかを意識してもらうことで、いきなり解決策の立案に飛び込むのではなく、新たなデータを用いた仮説検証を積極的に取り入れていくよう促していきたいと思います。

クリティカルシンキング入門

問いが拓く成長への扉

問いの重要性は? まずはじめに、どのような問いを立てるかということが重要だと実感しました。問いの正しさを、もう一人の自分の視点で確認しながら検証することが求められると理解しています。また、抽象と具体という違った側面を同じレイヤーで比較し、逆の視点はどうか、一言で表現するなら何かという点についても、普段意識が足りないと感じています。今後はこの点を意識的に改善していきたいと思います。 自身の問いの見直しは? ①自身については、繁忙な時ほど、大切な場面で勘だけに頼らず、広い視野と視点から問いを立てる努力を続けます。「忙しい!でも問いはたてよう!」という意識を常に心に留め、行動していきます。 社内での学びは? また、②社内では今回の学びを共有し、各イシューを一つずつ明確にしていきたいと考えています。会議の際には、自ら積極的に問いかけることで、理解を深め、情報の浸透を図りたいと思います。 外部本質の問いは? さらに、③社外においては、お客様の本質や、現在起きている事象の根本的な部分に注目することで、お客様自身が気づいていなかった重要な本質に気づけるよう促していきたいと考えています。

アカウンティング入門

収益構造から読み解く経営戦略

収益構造はどう影響する? 学んだ内容の中で印象的だったのは、事業活動の収益構造が企業のコンセプトに大きく影響されるという点です。自社がどのようなコンセプトで事業を展開し、収益を上げていくのかを最初に明確にしておくことが重要であると感じました。そうしなければ、場当たり的な対応になったり、顧客のニーズを捉えられない、あるいは伝わらなかったりするリスクがあるからです。さらに、PLから読み取れる収益構造を基に、企業の特徴や課題について仮説を立て、検証する方法も学びました。 部署間比較で何が見える? この知識を活かし、まずは自部署の事業収益構造と、競合他社との比較から自社の強みや弱みを分析し、課題解決につなげたいと考えています。また、月次の採算会議や各会議で、自部署の課題や対策を検討する際にも、この学びを実践的に活用しています。さらに、自部署のPL(管理会計ベース)と他部署のPLを比較することで、各部署の特徴や利益の出し方にも注目するようになりました。今後は、競合他社のPL(財務会計ベース)も確認しながら、自社に不足している活動を明らかにし、経営層へ具体的な提言を行っていきたいと思います。

データ・アナリティクス入門

仮説×データで切り拓く未来

どうして条件を揃える? 今回の実践では、普段の業務で使っているデータ分析のフレームワークと非常に近い感覚を得られました。時期要因や市場状況、法令改定など、すべての条件を完全に統一することは難しいですが、できるだけ条件を揃えた上でA/Bテストを行う大切さを再確認しました。 仮説はどう検証する? また、仮説を立てる際には、一人の頭脳や限られた環境だけでは限界があると感じました。時間を確保し、場合によっては他者の意見や視点を取り入れながら、しっかりと仮説を検討し、データの切り口を考える必要性を実感しました。 採用分析のコツは? 顧客の採用データ分析については、応募から入社までの全てのプロセス(場合によっては書類選考の評価も含む)を明確に線引きし、どの段階で大きな離脱が起きているのかを特定できるよう、可視化の土台を整える重要性を学びました。 改善の基準は何? さらに、改善施策を検討する際には、どの指標を、どのように改善するための施策なのか、また、いつのスコアを基準にするのかを明確にすることが必要です。振り返りの際には、必ず条件を揃えて比較することが求められると感じました。

データ・アナリティクス入門

代表値が語る!新たな比較のヒント

グラフだけで十分? これまで、単にグラフを用いて数値を視覚的に比較する方法に頼っていました。しかし、代表値に着目した比較はほとんど行っておらず、今回、加重平均、幾何平均、中央値、標準偏差といった比較に有用な数値があることを学びました。 業務への活用は? この学びを自分の業務にどう活かすかが、今後の課題だと感じています。手元にある数字の代表値を用いることで、どのような比較ができるのかを明確にすることが、新たな発見につながるデータ分析のカギになると考えています。 他地域比較は? 特に、前年や他地域との比較において、データを代表値に置き換えて検証することで、新たな示唆が得られるかもしれません。現状、扱っているデータはシンプルですが、代表値を取り入れることで比較分析がより効率的になる可能性を感じました。 数値分析を実践? まずは、現時点でのデータの代表値を算出することから始め、加重平均、幾何平均、中央値、標準偏差を用いた分析にチャレンジしてみたいと思います。これによって、短時間で効果的な比較が実現できるか、または新たな発見があるのかを検証していきたいです。

アカウンティング入門

B/Sが映す企業価値の謎

B/Sの数字は何を示す? ビジネスモデルや企業が提供する価値が、貸借対照表(B/S)に現れる数字に大きく影響する点に大変興味を持ちました。これまで苦手だったB/Sを読み解く作業も、今回の講義を通じて新たな面白さを感じることができました。 講義で何が変わった? 講義では、自分にとってイメージしにくかった業界のB/Sも、「提供価値」という視点から考えることで、よりわかりやすく読み解けるという学びがありました。特に、ある企業が震災を受け現金保有率を高めた事例は、B/Sが企業の健康状態を表すという考え方を改めて実感させてくれました。 異業種比較の真意は? また、これまで自社や同業他社のB/Sを比較していた自分にとって、ビジネスモデルが異なる他業界との比較も自社への新たなヒントになるのではないかと感じました。まず、自社の顧客に対する提供価値を改めて考え、その視点からB/Sを見直すこと。そして、次に同業他社の提供価値も再検証しB/Sを読み解いた上で、さらに他業界のB/Sにも目を向け、各ビジネスモデルとB/Sとの関係性を比較するという流れが、今後の経営判断に役立つと実感しました。

マーケティング入門

実体験が教える普及のコツ

商品の魅力はどう伝える? 売れる可能性を秘めた商品でも、その魅せ方次第で手に取ってもらえないことがあります。今回、商品の普及に影響する要因を多角的に考えるため、「イノベーションの普及要件」という5つの視点(比較優位、適合要件、わかりやすさ、使用可能性、可視性)を学びました。 経験から何を学ぶ? また、自分自身が新商品の購入をためらった経験を思い返すと、このフレームワークの各要素が身近に感じられ、具体的な事例として捉えやすくなりました。 何で伝えると効果的? さらに、商品を紹介するためのDM(タイトルや文面)、営業資料、CTAボタンの文言作成といったシーンで、このフレームワークが大いに役立つと実感しています。普段は漠然と考えていたのですが、今回はこの枠組みに沿って検証することで、より良い表現やアイデアを導き出せるのではないかと期待しています。 キャッチ作成の悩みは? 一方で、キャッチコピーの作成など、AIに相談してもなかなか理想通りにならないことが多く、今回のようなフレームワークに基づいた検討が、素敵な文言を生み出す鍵になるのではないかと感じています。

データ・アナリティクス入門

分解して実験!柔軟思考の学び

原因はどう分析する? 原因を把握するためには、まず複数のプロセスに分解して考え、どこに問題が潜んでいるか確認することが重要です。良さそうな仮説が浮かんだら、すぐに試して実際の反応を収集し、実験や検証を通じてブラッシュアップしていくプロセスが効果的です。正しい原因を探しすぎず、迅速な行動が大切だと思います。 どこで顧客が離脱? ファネル分析は、顧客の行動を理解するのに役立つ手法です。各プロセスを細かく分解し、数値や割合を比較することで、どの段階で大きな離脱が発生しているかが明確になります。例えば、ECサイトにおいては、検索段階なのか、カート投入後なのか、決済時なのかといった具体的な離脱ポイントが把握できる点が特に有用です。 分析方法のポイントは? また、What、Where、Why、Howというステップを踏むことで、データ分析の精度が向上し、迅速な問題解決につながると実感しています。仮説を複数立てたりプロセスを細かく分解することは大切ですが、それに固執しすぎると原因分析や具体的な改善策の検討に進めなくなるため、柔軟な思考を保つことが重要だと感じました。

アカウンティング入門

数字が紡ぐ経営のストーリー

利益の違いは何? P/Lは、企業がどれだけ利益を上げているかを示す重要な指標です。利益の表現方法には、営業利益、経常利益、そして当期純利益という3つの種類があります。営業利益は本業の成果を示し、経常利益は本業以外の収益も含む指標として決算で示されることが多いです。一方、当期純利益は、災害や土地売買など一時的な要因による利益を反映し、最終的な売上を示します。 仮説検証の意味は? また、分析を進める際には、仮説を立ててから検証するプロセスが重要です。大きな数字で全体の概況を把握し、比較や対比を行うことで、傾向の変化や大きな違いを見出すことができます。 分析の視点は? 具体的な取り組みとしては、まず取引先やグループ会社のP/Lを確認し、儲かっているかどうかを見極めることが挙げられます。次に、社内で他の人と意見交換をして、さまざまな視点から分析することが有効です。さらに、自発的にP/Lをチェックする習慣を持つことで、理解が深まります。 業種間の違いは? 最後に、P/Lは企業ごとにコンセプトの違いが表れるため、さまざまな業種のP/Lに目を通すと良いと感じました。
AIコーチング導線バナー

「比較 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right