アカウンティング入門

B/Sで分かる経営の秘密

B/Sの新発見は何? B/Sについては、存在は知っていましたが、業務で具体的に使用することはなかったため、二面から財務状況を把握するという考え方が非常に新鮮でした。流動負債と固定負債という用語にも馴染みがなかったため、まずは自社の事業内容と照らし合わせながら、具体的な分類を再確認したいと感じました。また、業界ごとに資産や負債の比率が大きく異なる点にも驚きを覚え、今後各業界の適正な比率についてさらに学んでいく必要性を強く感じました。 借入状況はどう評価? 借入状況や使用用途が把握できることで、経営状態の健全性をより正確に評価できる資料であると感じました。このため、同業他社の比較やM&A先の企業の財務状況を確認する際にも有用だと思います。業界ごとに異なる資産や負債の比率を見極めながら、理解を深めていくことに大いに価値があると考えています。 自社B/Sの現状は? まずは、自社のB/Sについて、既に状況がある程度把握できている部分から検証を始めたいと思います。現金資産が豊富であると聞いている自社について、そのメリットやデメリットについても明確ではない現状から、資産や負債の内訳に伴うリスクなどを含め、総合的に理解を深めたいと考えています。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

クリティカルシンキング入門

伝える技術が劇的に向上した学びの旅

伝える目的は何? 「伝える」という点において、目的の重要性を再確認しました。前回と同様に、「誰に対して、どのようなことを求めているのか」を明確にすることが、伝達行動の鍵であると感じました。今週の学習では、視覚化によってどのように伝わりやすくなるかについて、多くの気づきを得ることができました。資料を作成する際、「これくらいわかるだろう」と思い込みがちですが、読み手の負担を軽減することが重要であると意識します。 資料作成の工夫は? アンケートや施策効果検証においてグラフや資料の作成を行う機会が頻繁にあります。最近ではCM効果検証の報告資料をまとめましたが、グラフの作成方法や強調すべきポイント、そして見やすさの追求において不足している部分が多いと感じました。資料を見返すと、多くの学びがあり、次回の資料作成に活かしたいと思います。 説明方法はどう? 週明けには、施策の打合せで概要を説明する機会があります。その際に、誰に伝えるのか、どのポイントが重要なのか、そして伝えたいことは何かを整理したいと思います。これを視覚化(文章に起こすこと、比較表やフロー図を作成すること)を通じて、初見でも理解しやすい説明をできるよう準備を進めたいと考えています。

データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。

データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

マーケティング入門

商品が売れる鍵は「魅せ方」だった!

顧客心理の理解は重要か? 今週の実践演習を通じて、顧客のニーズが満たされていても、その商品の魅力が伝わらなければ売れないことを学びました。また、新商品を購入する際、顧客が躊躇する心理が働くこともマーケティングにおいて重要な点であり、新たな気づきになりました。このような心理が働く可能性を理解した上で商品の魅力を伝えなければ、優れた商品でも「売れる」ことには繋がりません。 魅せ方をどう工夫する? イノベーションの普及条件のフレームワークを活用し、顧客に伝わる商品の魅せ方を追求する必要があると感じました。まず、自社商品のコンセプトと魅せ方を改めて確認し、その上で包材の側面から新たな価値を付加できないかどうか考えます。また、自分が思っていた商品の魅力と実際の魅せ方が一致しているのかも吟味します。 競合との違いを見極めるには? さらに、売れている商品がどのような魅せ方をしているのか、他社の競合商品と比べてどのように差があるのかを、お店の商品を見ながら比較してみます。新商品が出たときに、それを「買いたいと思うか、買いたくないと思うか、なぜそう思ったのか」について、自分自身の考えを深堀して、その商品魅せ方を検証していきます。

データ・アナリティクス入門

仮説で深掘り!売上低下の真因

仮説はどう検証する? 仮説は必ずMESEの考え方に基づかなければならないと感じています。そのため、仮説の正しさを相手に伝えるには、最低でも3つ以上の観点から情報を比較し、各角度で検証する必要があります。また、万が一仮説が間違っている場合に備え、複数の仮説を用意することも重要です。 売上減の理由は? 「なぜ売り上げが下がっているのか?」という問いについて、これまでのアプローチはある特定の数値を比較し、その数値を上げるための方法を提案するものでした。しかし、単に数値を比較するだけではなく、なぜその数値が下がっているのかという深い原因に目を向け、さらに詳細な仮説を立てて実証していく必要があると感じました。今後はロジカルツリーなどの思考ツールを活用し、原因の追求をより体系的に行いたいと考えています。 週次資料はどう整理する? また、毎週作成している週次資料はこの手法を実際に試す良い機会だと感じています。週次資料における各項目の定義を再検討し、仮説構築に不可欠な基本的な指標が何であるかを明確にしていきたいです。さらに、月次と週次で使用する項目の見直しも併せて検討し、より精度の高い改善策を模索していきたいと考えています。

データ・アナリティクス入門

分解で納得!問題解決の実践

課題の本質を探る? 問題解決には明確な手順が必要です。まず、直面した課題を正確に言語化し、現状とのギャップを明らかにすることが求められます。そのため、分析を始める前に、課題とギャップの埋め方についてしっかりとすり合わせ、合意を得ることが重要となります。 合意のポイントは? 合意を形成するためには、問題を漏れなくダブりなく分解し、論理的かつ視覚的に納得感が得られる形で提示する必要があります。たとえば、「劇場の売上の減少」という課題認識のもと、大枠では単価と客数に分解できますが、そこからさらにMECEな形で掘り下げ、時系列比較の中で最も影響が大きい部分を特定することが効果的です。 収束はどう図る? また、予実比較の検証のように議論が発散しやすい場合でも、一定の手順に従えば納得感のあるロジックで改善箇所に合意が得やすくなります。具体的には、直近1年分の売上データを活用し、MECEな形で分解作業を行うことで、現状の売上改善余地がある領域を根拠をもって説明できるようになります。 改善策はどう決定? 最終的に、関係者の合意を得た上で、特定した改善領域に対するアクションプランを立案し、提案することが求められます。

データ・アナリティクス入門

A/Bテストの効果的な活用法を学ぶ!

問題原因の探求方法は? 問題の原因を探るためのポイントには、プロセスに分解するアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠を持って絞り込むことが重要です。例えば、クリック率やコンバージョン率の数値の原因を会社の戦略とそれ以外の要因(プラットフォームに起因するものなど)に分けて考えることが参考になります。 A/Bテストの効果は? A/Bテストについては、1要素ずつ比較し、なるべく同じ期間でテストを行うことが推奨されます。同じ期間で行わなければ、季節や曜日、時間といった細かい違いによって比較が難しくなります。A/Bテストは広告キャンペーンでの活用が考えられ、広告のビジュアルを変えて検証することや、掲載場所を変えてコンバージョン率を比較することで、不要な場所への広告掲示を避け、コストカットにつなげることができます。 A/Bテストを今後活用するには? 現在のところ、実際の仕事でA/Bテストを活用できる機会はありませんが、問題解決の方法として非常に効果的な検証方法であると感じています。今後、適用できる場面を見つけ出しながら、他の検証フレームワークも学んでいきたいと考えています。

アカウンティング入門

カフェで体感!PL構造の魅力

カフェで何を学んだ? 先日の授業では、別の事例紹介に続いて、カフェを例にとってPL構造の復習を行いました。 数字で何が見える? PLを理解する上で、大きな数値をもとに全体概要を把握し、各項目を比較することが重要であると実感しました。また、事業が提供する価値と照らし合わせる視点も非常に印象的でした。 シンプルな構造は? カフェという事例は、売上、原価、販管費といった要素がわかりやすく、単店舗飲食業というシンプルなビジネスモデルであるため、提供価値の違いによるPL構造の変化が理解しやすかったです。 今後の取り組みは? 今後は、以下の点に注力したいと考えています。 ① 今期の予実分析時にPL構造を再確認する。 ② 担当事業のPLについて、提供価値との整合性を再検証する。 ③ 現業界内での競合企業や、将来のターゲット市場の企業を複数社分析し、比較対照する。 業界特性はどう? また、業界ごとにPLの構造特性がある中で、業界全体の傾向から大きく逸脱する例が存在するのか、さらに提供価値とコストのバランスを評価するための普遍的なKPIがあるのかについても、今後の検証課題として気になりました。

「比較 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right