データ・アナリティクス入門

学びが起こす知見の化学反応

問題点はどう把握? プロセスや構造に分けて問題点を特定することが、その後の質に大きく影響すると実感しています。まず、問題点を明確に洗い出し、その原因に対して仮説を立てるプロセスが重要です。仮説を検証するために、データをもとに検証を行い、比較という視点を取り入れることで、効率的かつ網羅的な検証が可能になると考えます。 仮説の基礎は何? 良い仮説を立てるためには、具体的なイメージを描くことが不可欠です。そのためには、まず自分の実際の経験に基づいた知見を持つこと、また他者からの豊富な経験を聞くことが有効です。さらに、異なる部門や業界の意見に触れることで、知見に化学反応が起こり、新たな視点を取り入れることができます。 知見を守る秘訣は? 結果として、経験の幅と質を高めることで、絶えず学び続けながら自分の知見の鮮度を保つことができると考えています。

データ・アナリティクス入門

比較と仮説でつくる現場改善の秘訣

目的と仮説の効果は? 今回学んだ「目的を持った比較や仮説に基づく分析」は、土木現場における工期短縮、コスト管理、安全対策の見直しに大いに役立つと感じています。たとえば、過去の類似現場と比較して資材使用量や作業時間に差が見られた場合、その背景を詳しく分析することで無駄や非効率を特定し、具体的な改善策を立てることが可能です。 記録と検証の効果は? まずは、各現場の作業時間、コスト、事故件数などのデータを日常的に記録・整理し、月単位で過去の現場と比較する習慣を身につけたいと考えています。特に大きな差が見られる項目については、「なぜこのような結果になったのか?」という仮説を立て、関係者と意見を交わしながら原因を徹底的に究明し、改善策を現場に反映させていきます。小さな気づきも見逃さず、分析を日常業務に取り入れていくことを意識して行動していきたいと思います。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

データ・アナリティクス入門

実務革新!柔軟なA/Bテストの実践法

A/Bテストの本質は? A/Bテストの手法について、正しい理解を深めることができました。これまで実務で行っていた比較テストは、ある時点を基準に新旧を比較する単純な方法でしたが、今回の学びを通じてその限界と、より柔軟な視点で検証する必要性を実感しました。 課題把握の秘訣は? また、課題を正確に把握するための分析方法や、課題解決に向けたアクションを正しく評価するプロセスも学び、これらの施策を実務に組み込む意欲が湧きました。具体的には、自社製品やウェブサイトの外部メディアへの出稿にあたって、クリック率やCVRを用いた比較検証が効果的だと感じています。 メール配信はどう最適化? さらに、ウェブサイト会員へのメールマガジン配信の際にも、出稿内容やデザインによってA/Bテストを実施することで、より最適な方法を選択できる可能性を感じました。

アカウンティング入門

数字だけじゃなく実像を読み解く

財務の見方はどう? 今回の学習で、業種や企業の特性に応じた財務諸表の読み方が変わることを実感しました。単に数字を見るのではなく、それぞれの企業の特徴を踏まえて仮説を立てながら財務諸表に向き合うことで、より深い理解が得られると感じました。 実践で力をつける? 具体的には、CVCの業務において、投資先やアライアンス先企業の財務諸表を詳細に分析し、企業の強みや弱みを把握する手法や、日経新聞などで注目している企業の情報をもとに投資判断や戦略の立案に活かす方法を学びました。また、実際に特定の企業の財務諸表を基に予想を立て、実態との比較検証を行うサイクルを実践することの重要性を再確認しました。さらに、学んだ内容を上司や同僚に報告してフィードバックを受けることで、実践的な知識をさらに深め、業務に生かしていこうという意欲が高まりました。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

データ・アナリティクス入門

仮説と五視点が導く仕事の知恵

どうして5視点が必要? 今回の学習で特に印象に残ったのは、比較分析を行う際にプロセス(仮説)が必要であり、さらに5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)と3つのアプローチ(グラフ、数字、数式)の存在が重要であるという点です。 進める分析手順は? 分析のプロセスは、まず目的(問い)を明確にし、問いに対する仮説を立て、必要なデータを収集し、そのデータをもとに仮説を検証するという手順で進められます。これまで、どの視点を重視するかについて特に意識していなかった自分にとって、今後はこの5つの視点から必要なものを選び、意識的に分析を行う癖をつけることが大切だと感じました。 実務でどう活かす? 仕事のあるゆるシーンにおいても、自分の考えや判断の根拠として分析を活用していきたいと思います。

データ・アナリティクス入門

視点を広げる根拠の解決術

原因考察と仮説検討は? 原因を考える際、問題発生までのプロセスを洗い出し、対概念などのフレームワークを用いることで、仮説検討の視点を漏れなく広げられると感じました。また、判断基準を設けた上で重み付けを行ったり、A/Bテストを実施して検証する方法も学び、具体的な打ち手の決定に役立つと感じました。 解決アプローチはどう? 業務におけるこれまでの問題解決のアプローチは、決め打ちに偏りがあり、問題点の洗い出しの視点が狭かったことや、なぜその結論に達したのかの言語化が不足していたと痛感しました。今後は、what→where→why→howのステップに沿って原因の観点を広く整理し、データを比較しながら根拠を持って仮説を立てたいと考えています。さらに、打ち手の決定に際しては、A/Bテストをうまく活用することを試みたいと思います。

マーケティング入門

名前ひとつで未来が変わる

名称変更が与える影響は? 今回の学習では、新商品の普及に寄与する5つの要素―比較優位、適合性、わかりやすさ、試用可能性、可視性―に焦点を当てました。特に、商品の名称変更が消費者の連想や期待にどのような影響を及ぼすかを事例を通して学びました。同じ商品でも、ネーミング次第で消費者が抱くイメージが変わり、結果として売上に差が生じる可能性がある点が示され、顧客ニーズやターゲットセグメントの分析の重要性を実感しました。 顧客ニーズの真実は? 自社製品においても、現在顧客ニーズの調査を開始した段階です。自分たちが想定している商品仕様が実際の需要とどの程度合致しているのか、また顧客が期待する機能と価格のバランスについて検証中です。今後は、顧客訪問やヒアリングを通じて、より具体的な情報を収集し、製品開発に反映させていく予定です。

データ・アナリティクス入門

仮説と実践が導く成果の道

成果をどう目指す? データ分析を行う際、まず数字やデータに飛びつくのではなく、最終的にどのような成果を出したいのか、何を比較すればよいのかといったアウトプットのイメージを明確にし、客観的に整理することが重要だと感じました。実務での実践力と、学問としての知識習得の両立を意識する必要性も再認識しました。 論点はどう整理する? また、コンサル業務においては、定量分析を進める中で迅速に論点を明確にし、全体の論点を中論点・小論点に分解することで、検証しやすい構造を作ることが求められます。そのため、まず仮説を立て、正しい比較対象に基づいたデータ分析を実施することが大切だと考えています。さらに、このような思考法やプロセスをジュニアメンバーにも積極的に共有し、育成に役立てていきたいと思います。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

戦略思考入門

数字で見極める捨て方改革

なぜ捨てるのが難しい? これまで、自分は捨てることを非常に難しく考えていたという実感を改めて持ちました。過去からの関係性を重視するあまり、本当に必要なものとそうでないものを見極めることが難しかったのだと思います。 どうやって選び取る? しかし、今回、明確な判断基準として数値やデータを用い、何を優先し何を捨てるのかを選択することが可能であると気付きました。売上拡大や利益率向上を目指して多くの改善テーマに取り組む中で、従来から掲げてきた改善テーマについても、意味を再検証する必要性を感じています。具体的には、以前から実施していた特定のコスト削減策について、他の施策と数値やデータで比較し、優先順位の低いテーマは見直す判断に至りました。

「比較 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right