データ・アナリティクス入門

仮説思考で学びを実践、諦めない心の重要性

仮説思考で成果を出すには? 仮説思考の鍛え方について体系的に学ぶことができ、非常に勉強になりました。毎回同じような学びであっても、体系的に言語化することで再現性が高まるため、自分で実践するにも他の人にアウトプットするにも非常に参考になります。 諦めない姿勢の重要性を再確認 仮説思考の鍛え方を通じて、「諦めず・熱意を持って・仮説を考え続ける」ことの重要性を改めて感じました。理解するだけではなく、それを実際に実践し、成果に結びつけることは非常に難しいです。そのため、「諦めない」ことがもっとも大切であると過去を振り返って改めて感じます。 継続的なデータ分析の意義とは? 経営データのデータ分析については、じっくりと分析する機会はあるものの、継続的には行っていません。課題は次々に発生するため、つい短絡的に結論を出してしまいがちです。これからはしっかりと時間を確保し、仮説検証を繰り返し行って問題解決の精度を高めていきたいと思います。 タスク整理と学びのルーチン化 まずは自分のタスクを改めて整理し、優先順位の低いものは権限移譲するか、削減して時間的余裕を生み出します(9月中に実施します)。また、毎週土曜日は極力「学びと実践」の時間とし、仮説検証を毎週のルーティンとして実践していきたいと考えています(今週から開始します)。

戦略思考入門

捨てる決断で見える未来

捨てる選択の価値は? 捨てる選択が顧客の利便性を向上させる点や、惰性で物事を進めないこと、さらには専門家に任せる判断も時には必要だという視点は、とても印象深かったです。また、定量的な指標だけでなく、数字では表しきれない顧客との関係性などの判断基準も併せ持つことで、より良い「捨てる」選択ができると感じました。さらに、トレードオフが発生する要因として、資源の制約(人・もの・お金)と、相反する性質を持つ要素(例:筋力とスピード)の両面が影響していることに新たな学びを得ました。 数字だけで判断できる? 一方で、定量的な指標だけで判断が難しい業務においては、組織に与えるインパクトを示す基準(影響を受ける人数、エンゲージメント、理解度など)を設け、時間の制約がある中で優先順位を決める際に活用することが重要だと感じました。たとえば、営業活動では顧客にとっての売上や利益、自社商品のパフォーマンス、そして時間あたりの生産性などを考慮し、何を実施し、何を見送るべきかを判断する手助けとなるでしょう。今年度の業務においても、組織に与える影響度(影響を受ける人数や影響の持続性など)の観点から整理し、雑務的な作業が惰性によるものになっていないか、また新たな取り組みを始める際には既存の何かを削減するという視点も持って活動していきたいと考えています。

データ・アナリティクス入門

仮説が導く学びの開花

仮説検証ってどう進める? 仮説には、結論を導くための仮説と課題解決を目指すための仮説の2種類があります。これらの仮説を検証するためには、まず誰に、どのようにデータを収集するかを明確にし、収集作業に入ることが必要です。一方的な観点に偏らず、反論を排除できる十分な異なる視点からデータを集めることで、仮説の検証はより説得力を増します。日々の業務の中で仮説を持つことにより、課題意識が向上し、目的が明確になるため、進むべき道に迷いが生じにくくなります。 大企画はどう進める? また、時間外労働の削減だけでなく、育児などで定時退勤が求められるメンバーもいるため、特に大きな企画や業務においては、仮説を立てた上でクリティカルに仕事を進める必要性を再認識しました。同時進行している別の案件の仮説に影響を受けることもありますが、データ収集と検証によってその関連性を明確にし、業務を円滑に進めていきたいと考えています。 調査票はどう作る? 現在取り組んでいるアンケート調査では、調査票設計の際に各項目についての観点や視点を検討しました。時間が限られていたため、場合分けが十分でなかった可能性もありますが、調査票は既に完成しており、明日から調査を実施する予定です。今回のアンケート調査の関連証拠として、データの特定を進めていきます。

データ・アナリティクス入門

目的意識で未来を切り拓く

学習前の心構えは? まず、学習に入る前に心構えをしっかり持つ時間が取れたことが非常に有意義でした。データ分析の授業でも触れられていた「目的地」の重要性に気づかされ、目的を定めずに学習を進めると、行き当たりばったりになってしまい、自分が本来得たい知識が得られないという現実を改めて実感しました。 分析手段の真意は? また、データ分析は単なる分析そのものが目的ではなく、目的を実現するための手段であり、その手段を用いて仮説を立てることが本質であるという点も認識できました。目的意識を明確に持って初めて、必要なデータの抽出やその後の分析が効果的に行えるのだと理解しました。 売上報告にどう活かす? この学びを、毎月作成している売上の月次レポートに活かしていきたいと考えています。売上報告では、現状の振り返りを通じて得られる情報を整理し発信しています。月ごとに売上は変動し、好調な時もあれば不調な時もあるため、どの要素に着目すべきかを明確にし、良い状態を維持するための具体的な目的を掲げる必要性を感じました。 具体的には、全体の売上維持や増加という大目標に対して、注目すべき項目を検討し、その項目に関連するデータを抽出します。そして、期間中のデータを元に仮説を立て、その仮説をチームに提示するというプロセスを実践していく予定です。

データ・アナリティクス入門

データ分析で見つけた新たな気づきと行動力

解決策をどう選ぶ? 適切な解決策を決定する際には、決め打ちせずに他の仮説から導き出されるHowも考慮することが重要だと感じました。自社が現状で何を優先すべきかを考え、解決策同士を比較しながら適切な選択をする必要があります。そのためには、常に目的と優先事項を意識し、立ち戻って再考することが必要だと思います。 行動が生む成果とは? 完璧を求めすぎるあまり、仮説の検証ができない、考えすぎて動けなくなることもあります。ある程度の目途がついた時点でまず行動することが、結果的に良い仮説を生むことになります。 データ整理の新たな切り口 データを切り口を変えて整理する方法について述べます。物流会社で専用アプリを使用してトラックの待機時間を集計していますが、単なる集計だけでは不十分です。時間帯別や事業所別など切り口を変えてデータを整理し、今後の活用方法を示す必要があります。 業務プロセス改善の手順 問題箇所を特定し、各事業所の業務プロセスのどこに起因しているかをグループ内で議論したいと考えています。最終的には、待機時間の集計作業から業務プロセス改善まで話をつなげたいと考えています。そのために、本講座で学んだ「客観的にわかりやすく数値化して説明する」ことを意識しながら、メンバーと議論を続けていこうと思います。

戦略思考入門

成果を生むための逆算思考の秘訣

効果的な目標設定の大切さ ゴールや戦略が明確でなければ、どれだけ時間と労力を費やしても、成果は得られません。行動を起こすことの重要性が強調されることが多いですが、同時にその行動の方向性が正しく設定されていなければ、実りはありません。たとえば、ビジネス英会話を目標にするなら、大学受験の英文法を学ぶよりも、ビジネスシーンで使用されるフレーズを覚える方が目標に近づくでしょう。行動を起こす前にゴールを設定し、そこから逆算してアクションを明確にすることを意識すべきです。そして、ただ考えるだけでなく、紙に書き出して言語化する習慣をつけることが大切だと感じます。 営業戦略で重要な判断は? 営業企画として、どこに販促支援の重点を置けば売上の最大化が図れるのかを明確にすることが求められます。現状の顧客属性、市場規模、成約までのタイムスパンなどを総合的に考慮し、限られたリソースをどこに配分するかを判断します。 逆算思考で情報整理を! 逆算思考でゴールに必要な情報をもれなく洗い出す習慣を身につけることが重要です。そのために必要な情報を常に紙に書き出し、言語化して整理できるようにしておくことが大切です。また、第3者からのフィードバックを定期的に受け取る機会を確保し、あらゆる意見をもらえるように人選に工夫を加えることも必要です。

データ・アナリティクス入門

論理ツリーで磨く実践スキル

なぜ手法を再確認? 今回の学習では、問題解決のステップ(What/Where/Why/How)に沿って、各段階でどのようなアクションを取るべきかを再確認することができました。普段の業務でも同様の手法を取り入れていますが、今回の具体例を通じて現状の見直しに役立つと感じました。 適切な分解は何故? また、ロジックツリーに取り組む際、すべての要素を漏れなくダブりなく洗い出そうとするあまり、時間をかけすぎてしまう傾向があることを改めて実感しました。特に末端の階層にこだわりすぎず、適切なレベルで分解するというアドバイスは大きな気づきとなりました。 現業務の解析はどう? 現在の業務では、顧客へのサービス提供に際してコスト試算や自部署の予算計画、実績の分析を行っています。例えば、コスト試算においては提供価格、原価、販管費といった大枠から、さらに細かい費目に分解して検証していますが、構成要素をツリー状に分解するという手法は初めての体験でした。今回の学びを現業務にも活かせると考えています。 次の改善策は何? 今後は、自部署における予算計画、実績把握、コスト試算のプロセスに、ツリー状の分析手法を取り入れてみます。一度試してみて、試算の妥当性や課題の特定にどのような効果があるかを検証していきたいと思います。

マーケティング入門

感動体験が未来を拓く

感情と体験のつながりは? 「経験が感情に紐づき、その人にとって唯一無二になる」という考えが最も印象的でした。単に商品を販売するのではなく、顧客との長期的な関係を築くことでライフタイムバリューに結びつけるというアプローチは、体験の変化や社会の課題解決といった視点が、長期的な顧客関係形成において重要であることを教えてくれました。 なぜ起業の知見が必要? この学びは、新規業務の提案に活かすとともに、将来的な起業にも役立てたいと考えています。特にスタートアップでは、短期的な成果と長期的な仕組み作りの両面が求められるため、大手企業の事例だけでなく、中小企業の成功と失敗の両パターンから経験を積む必要があると実感しました。そのため、書籍や動画サービスを利用し、情報を常に収集する習慣を大切にしています。 どうやって学びを深める? 具体的には、書籍と動画の二つの媒体から継続的に情報を得る計画です。購入した本は全て読み通すのではなく、目次やダイジェストを参考にし、読むべき内容かを判断してから深く読み込むようにしています。また、今後は学習時間に余裕ができると考え、その時間を有効活用して継続的な学びを心がけるつもりです。さらに、部署内でアウトプットの機会を設け、知識を伝えることでさらに習熟を目指していきたいと考えています。

戦略思考入門

不確実を戦略に変える挑戦

戦略的な問いは? 講義中、「戦略的な人とはどのような人物か」「戦略的とは何か」という問いに触れ、誰もが大小さまざまな戦略的行動を取っていると実感しました。しかし、自分自身が十分に戦略的に動けていないと感じる背景について考えた結果、主に二点あると気付きました。 戦略が足りない理由は? まず、不確定な事柄を明確にするための思考が十分に身についておらず、「自分には難しい」と考えたり、俯瞰的に全体を捉える時間が足りなかったりすることが挙げられます。次に、独自性を意識して行動するという観点が不足していると感じました。これらの点を研修期間中に克服し、意識して身につけていきたいと思います。 活かし方を考える? この学びは、今後以下の二つの場面で活かしたいと考えています。 数値目標はどうする? 一つ目は、組織の数値目標や状態目標達成に向けたアクションプラン作成です。目標は設定しているものの、さまざまな角度からのアプローチがある一方で、具体的な行動計画に落とし込めていません。直近の経験と直感に頼ったアクション決定の癖を是正し、より精緻なプランを構築していきたいです。 提案はどのように? 二つ目は、顧客への案件提案の際です。自社ならではの独自性を真剣に追求し、提案内容に反映させることが今後の課題です。

クリティカルシンキング入門

データ分析で見える新たな発見と改善法

データをどう視覚化する? データを分析する際には、今ある数字に一手間かけることが重要です。ただ数字を並べるだけでなく、グラフや表に変換すると新しい発見が生まれます。また、比率に変換することで別の角度からデータを見ることができ、さらなる洞察が得られます。 分解の基準は何が有効? データを分解する際には、人、時間、手段などの基準で区切ると分かりやすくなります。例えば、月次や年次の売上分析、SNSのインサイト分析など、数字が明確に示されるものだけでなく、業務の効率化や成果が出なかった場合の原因分析にも役立ちます。 問題の特定と解決策のステップ まず、起きた問題に対して「もれなくダブりなく」を意識し、全体を大きく分けて定義します。その際には、層別分解、因数分解、プロセス分解を用いることが有効です。次に、出てきた項目をさらに分解し、どこが問題点なのかを数字や表で明確にします。そうすることで、問題の箇所を特定しやすくなります。問題が特定できたら、なぜそうなっているのかを考えます。そして、どう解決すれば良いのかを分析から導き出し、仮説を立ててトライアンドエラーを繰り返し、最適な解決策を見つけます。 これらの手法を念頭に置くことで、データ分析がより効果的になり、業務の改善や効率化にもつながると感じました。

戦略思考入門

迷い捨てROIで勝つ判断の秘訣

判断基準はどう選ぶ? 選択(捨てる)ためには、判断基準を持ち、複数の視点から仮定を置いて考えることが大切です。また、ROI(投資効果)も踏まえた上で判断する必要があります。顧客の利便性を第一に考え、伝統や惰性に流されず、専門家に任せるという意識も重要だと感じました。 バランスはどう取る? 優先順位の考え方においては、トレードオフの概念を学びました。つまり、何かを得るためには何かを犠牲にするということです。複数の要素が存在する場合、両立が難しいときには、それぞれのバランスを取り、効果が最大化するポイントを見つけることが求められます。ある要素同士が互いに相殺し合う場合には、どの要素に注力するかを明確にして、メリハリのある資源配分を行うことが最善の方法だと考えました。 戦略改善のコツは? 限られた時間の中で、常に優先順位を意識して作業を行っています。実際には捨てる選択をすることが多いと感じますが、その順位の付け方については、今ひとつ経験則に頼っている部分も否めません。日々の作業は何とか回っているものの、未来に向けた戦略を立てる際には、判断基準をより明確にする必要があると実感しました。今後は、各要素を数値化し、ROI(投資効果)をしっかりと分析することで、より合理的な判断ができるよう努めたいと思います。

データ・アナリティクス入門

仮説で読み解く成功のヒント

仮説の基本は何? 今回の学習で、仮説について深く学びました。仮説とは、ある論点に対して一時的に立てる答えのことで、例えば、ノンアルコール商品の販売増加を見る際、対象となる消費者をビールが好きな運転者や妊婦などに分けて分析する、といった考え方が応用できると感じました。 仮説の役割はどう? また、仮説には問題解決のための仮説と、結論を導くための仮説があることを理解しました。時間軸として、過去、現在、将来の視点で検討していくこともポイントでした。 売れる理由は何? 具体的な例として、①なぜある商品が売れるのか、または売れていないのかについての仮説では、若い世代に人気で刺激的ではない味が影響している可能性や、商品が不安定なために安定した需要を得られていないのではないかといった視点が挙げられました。②なぜある地域や取引先で売れるのか、あるいは売れていないのかを考える際には、その地域に若い人が多いのか、高齢者が多いのかという点が仮説の根拠になり得るという点が印象的でした。 検証データはどう活かす? さらに、仮説を検証するためには比較可能なデータ収集が不可欠であり、アンケートを実施する際の設問項目の考え方や、どのようなアンケート内容が仮説と結論を結びつけるのに適しているかという点にも関心を持ちました。

「時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right