戦略思考入門

フレームワークで読み解く経営戦略

戦略思考はどう身につく? 3C分析、SWOT分析、バリューチェーン分析のEラーニングは今回で2回目となります。以前、グロービスの書籍も2度ほど読んでいましたが、職位や業務内容の変化を受け、戦略的な思考をより一層身につけたいという強い思いから再度学ぶこととなりました。改めてフレームワークに基づいて考えることで、行き当たりばったりではなく、全体像を網羅的に把握できる点を実感しました。特に、今はこれまで以上に経営的な視点で、二手先、三手先、あるいは将来戦略を意識し、限られたリソースの中で包括的な課題解決を図る必要性を感じています。そのため、実践の中でこれらのフレームワークを確実に身につけていきたいと考えています。 品質保証に未来は? 製造業における市場品質保証業務については、一見、即効性のあるビジネスに結びつきにくいように映ります。しかし、品質保証は短期的にはコスト削減に、長期的にはブランド力向上に寄与する重要な役割を担っています。3C分析では、市場や顧客から見た品質の視点、競合他社との品質コストの差、そして自社の強み・弱みの整理が求められます。また、SWOTやPEST分析を通じて、DXやAI技術など新たな技術動向やグローバルな環境の変化を把握し、現状を明確にすることが可能です。加えて、バリューチェーン分析によって、取引先や自社内での問題を定量的に検証し、時間やコストがかかっているプロセスを洗い出すことで、今回学んだ知識を具体的な業務上の改善に活かすことができると感じました。

戦略思考入門

戦略的思考で目標達成を目指す

戦略的思考ってどう捉える? 戦略的思考とは、適切なゴール(目的)を設定し、現状を把握し、ゴールまでの道のりをイメージし、可能な限り最短・最速でゴールへ到達するために考え実行することだと理解しました。 その手段は何なの? このための手段として、物事を俯瞰して見る、選択と集中を行う、そして独自性(弱みや強み)を活かすことが挙げられます。 課題の捉え方は? 与えられた課題に対しては、ゴールを明確にし現状を整理し、最短・最速で楽にゴールに到達するという視点で改めて取り組んでみたいと考えています。現在、ゴール(目標や目的)がぶれることが多いため、「戦略的思考」という考え方を取り入れ、ゴール設定に時間をかけてみたいと思います。 判断の軸はどこ? また、選択と集中、独自性という概念を取り入れるにあたり、判断基準について自分自身で考えてみたいと考えています。 ゴール設定で納得? ゴール設定においては、正しいゴール設定を行うために、以下の点を重視します: 1. 会社・部課・自分の目標と一致しているかを点検する。 2. 言語化して納得感が得られるか確認する。 現状はどう整理? 現状の把握においては、今の問題点の整理を徹底的に行うことが必要です。最短ルートを意識するために、まず「なぜやるのか(Why)」を考え計画を立てるように心掛けることも重要です。 新たな手法は? その他の手法については、本講座で学んでいく予定です。

データ・アナリティクス入門

振り返りで切り拓く未来

集客前提を疑ってみる? スクールの課題に対する対応優先順位を誤ってしまいましたが、そこには「また間違った集客を繰り返しそう」という隠れた前提がありました。まずは、この前提を改めることが必要であり、その上で真に解決すべき課題を特定する必要性を感じました。また、生徒データの切り口に関するブレストの中で、「ああそうだ、その観点も必要だ!」との意見があったことから、広い視野を持って落ち着いて検討する重要性を再認識しました。 数字の分析意図は? 分析したい項目がそもそも十分に取得できていない場合もあるため、あらかじめあきらめる部分もある一方で、見るべき数字の優先順位はしっかり決めて取り組む意向です。具体的には、イベントアンケート結果や申込者のデータについて、単に分析するのではなく「何が知りたいのか?その目的は何か?」と自分に問いながら進めるようにしています。 アンケート分析の意義は? 各イベント終了後には、アンケート結果と申込者属性の分析を行い、その内容を報告する必要があります。その際、以下の点を意識して業務にあたっています。まず①どの数値項目を優先的に見るのか、次に②その数値が他のイベントと比較して問題ないか、さらに③比較する際には条件を揃えているか、そして④関係者に報告する際には自分の仮説をセットで伝え、議論を促すかという点です。 特に②以降の実施が十分ではないと感じているため、限られた時間の中で箇条書きなどで条件を明確にし、意識しながら取り組むことを心がけています。

クリティカルシンキング入門

データを可視化して得られる学びの挑戦

数字だけでは捉えきれない問題とは? なぜ数字だけを追うと本質的な問題が捉えられないのでしょうか。それは、情報を表面だけで捉えるのではなく、分解の階層を深くすることで新たな視点が得られるからです。さまざまな切り口で解釈し、グラフなどを用いて俯瞰的に見ることで、視点が変わることがわかりました。 新たな視点を得る思考プロセス この過程で特に印象深かったのは、情報を直接受け止めるのではなく、自分で手を動かし、「他に何か切り口はないか」と考えつつ、出された答えに常に疑問を持つという思考プロセスです。このプロセスに大きな衝撃を受け、学びの多い経験となりました。 医療現場での重要なアプローチは? スタッフの教育や職場環境、患者や家族の問題を常に要素分解して、本質的な問題を抽出し解決する。このアプローチは特に医療現場で役立ちます。医療の現場では、複合的な問題が重なることが多く、特に救急医療においては「秒単位での時間軸」で変化が発生するため、迅速かつ深い分析が求められます。これによって職場や患者により良い医療を提供できるようになるのです。 問題解決にはどのような手法が有効? さらに、全ての問題に対してロジックツリーで考えること、情報を頭の中だけで整理するのではなく、手を動かして可視化することが重要です。また、MECEに従った分解では「何の目的」で分解するのかを常に考え、分解は最低でも3階層まで行うようにします。これにより、数字もグラフ化され、全体を俯瞰できるようになります。

クリティカルシンキング入門

ひと手間でひらく真実の扉

数字から何が見える? 数字で示されたデータには、どのような情報が含まれているのかを考察する中で、ひと手間加えて加工したり、切り口を工夫することの大切さを再確認しました。分け方は必ずしも均等である必要はなく、例えば18歳以下、19~22歳、23歳以上という区切りにより、隠れた特徴や傾向が見えてくるという考え方は非常に参考になりました。 具体と抽象はどんな関係? また、時間・人・手段といった観点から切り口を考えるとともに、MECEの視点を併用して具体と抽象の行き来ができるようになると、得られる知見が豊かになっていくことを実感しました。この手法を習得するには、実際に手を動かして試行錯誤するしかないと痛感しています。 企画資料はどう見える? さらに、この方法は企画実現の根拠資料作りにおいても非常に役立つと考えています。プラットフォーム企画が関係部門の承諾を得られずに停滞している現状に対して、ヒト・モノ・カネ・情報をMECEの視点で見える化することで、各部門の懸念を払拭し、説得力のある資料作成を目指したいと思います。 新たな販促策は? 加えて、他部門のプラットフォームの問題点を把握する際は、入手可能な範囲で登録者数やその内訳データを加工・確認し、そこから新たな販促手法を予想することが必要です。過去のチラシ反響を、時期や時間帯、年齢層、問い合わせ手段、地域などの切り口で整理・データ化することで、顧客の動きをより正確に読み取る検討が進むと考えています。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

クリティカルシンキング入門

問いが拓く本質と成長の軌跡

イシューの本質は何? 解決すべき課題、つまりイシューを明確にすることの大切さを学びました。なぜなら、本質ではない課題に取り組むことで無駄な時間が増えてしまうからです。また、イシューは経験的に忘れやすいため、定期的に振り返ることも重要であると感じました。(会議中に議論が横道にそれる場合などが参考になりました。) チームリーダーの疑問は? 一方、来年度からチームリーダーを任される立場として、今まで経験のなかったタスクの引継ぎを受けています。その際、タスクの目的、成果物が誰にどのように利用されているか、関係者は誰か、そしてタスクの重要なポイントはどこかといった問いを立てることで、タスクの理解度を高めたいと考えています。特に、リーダーが直接対応するタスクが逼迫すると、顧客からの新たな依頼に迅速に対応できなくなる懸念があるため、事前の段取りをしっかり整えることが求められます。 振り返りで学んだことは? これまでの学びを振り返ると、客観的に物事を捉えるためには、適切な問いを立て、複数の切り口から情報を紐解いて構造化することが不可欠だと再認識しました。しかし、過去はしっかりとした問いを設けず、経験や感覚だけで「類似している」と判断していたため、解像度が粗くなり、手戻りやミスによる工数の増大という問題を招いていました。特に未経験の業務においては、解像度がさらに低くなりがちなため、今後は問いを意識的に立て、記録しながら振り返る習慣を継続していくことが重要だと感じています。

クリティカルシンキング入門

数字で導く!分析の新たな視点

データ加工で全体像を把握するには? データを加工する際には、与えられた情報をそのまま受け取るのではなく、全体像を把握するために必要な項目を追加することが重要です。単に生の数値を羅列するのではなく、表として整理することで、様々な気づきを得ることができます。 グラフ化で得られる洞察とは? また、グラフ化する際には、数値をどのように区切るかが得られる解釈に大きな影響を与えます。どのように分ければ、より良い気づきを得られるかを意識しながら数字を整理することが求められます。グラフ化はあくまで手段であり、そこから得られる洞察を基に仮説を立て、実際の行動に結びつけて改善を図ることが目的です。 傾向が見つからないときの価値は? さらに、数字を分解してグラフ化した結果、傾向が見つからない場合もありますが、それは失敗ではありません。むしろ、傾向がないことが判明したこと自体に価値があります。 私はソフトウェアエンジニアなので、数字を分析する作業はあまり多くありません。しかし、例えばチームのミーティング時間を削減する際、いつ誰がどれだけの時間をミーティングに費やしているのかを分析するために、このような方法を活用できると考えました。 分析作業の目的をどう意識する? 分析作業に取り組む際、つい情報をまとめることが目的になりがちです。しかし、「何のための分析作業なのか?」、「仮説を得るためにはどのようにまとめるべきか?」といったことを常に考えながら、分析作業を進めたいと思います。

データ・アナリティクス入門

心に響く受講生のリアル声

分析の流れは? 分析とは、情報を分類し整理して、比較対象や基準を設ける作業です。データには種類があり、それぞれに適した表現方法を選ぶことで、どのように加工し見せるかが重要となります。また、分析のプロセスは、まず目的を明確にし、次に目的に沿ったデータや項目を選び、その上で実際にデータ分析を行い、最後に結論やまとめを導く、という流れが求められます。特に目的の明確化、データ・項目の選定、そして結論づけが重要です。 原価推移は分かる? 現在、立ち上げ中の製品原価推移を毎月報告し、現状を集計して前回との比較を行い変化点を確認しています。この報告は現状把握を目的としているものの、集計データから見える原価と、量産化後に実際に把握される実原価との間には差異が存在します。 差異の原因は? そのため、この差異を低減するために、必要な情報が何かを検討し、データ収集と分析を実施することが求められます。どこに差異が発生しているのかを把握し、解決のための打ち手を提案することが目的です。 どのデータを選ぶ? 比較に用いるデータとしてどの項目を選定するか考えると、多くの情報が存在するため、どこから手をつければよいのか迷うこともあります。まずは、既に把握している情報から仮説を立て、検証を進めるのが良いでしょう。その際、データをどのように加工し分析につなげるかに注意する必要があります。特に実原価を正確に把握するためには、人、物、時間といった要素が流動的である点に注意が必要です。

データ・アナリティクス入門

分析で開く意思決定の未来

仮説検証の視覚化は? ライブ授業では、これまで学んできた課題の特定方法や仮説の設定、結果の検証といったプロセスを再確認することができました。特に、仮説検証の成果をどのように可視化するかについては、参加者の意見を聞く中で、棒グラフや円グラフ以外にも表現方法が存在することを知り、新たな視点を得ることができました。また、限られた分析時間の中で、本当に必要な分析を見極めることの重要性を改めて実感しました。データが手元にあると分析したくなりますが、何のために分析するのか、得られた結果をどう活用するのかを常に念頭に置いて進めるべきだと感じました。 分析目的と改善は? 講座を受講する前にデータ分析を学ぶ目的は「意思決定に活用するため」であり、その目的は6週間の学びを経ても変わっていません。授業内ではマーケティングに関する事例も取り上げられましたが、現業務において活かす機会は少ないと感じます。一方で、A/Bテストや4P分析は業務改善のための改善案策定に、また相関分析は将来の経費推計に役立つと考えています。 何かを決定する際は、まずデータ分析で解決可能かどうかを検討しています。その際、何のために分析を行うのか、何を明確にするのかを設定し、ただ単にエクセルでグラフを作成するのではなく、その手法が最適かどうかを熟慮することを習慣にしています。また、年1回の定例報告の場合、長年変わっていない報告形式も多いですが、可能な範囲でより伝わりやすい形式に改善していくことが重要だと感じています。

リーダーシップ・キャリアビジョン入門

具体的な信頼関係で築く理想チーム

リーダー像は具体的? 今回の学習を通して、上司と部下は主従関係、リーダーとフォロワーは信頼関係であることに気づきました。理想とするリーダー像がふわっとだけでなく、もっと具体的にイメージできるようになるため、今後さらに学んでいきたいと感じています。自分自身はもちろん、フォロワーを増やし、良いチームを作るために努めたいと思います。表面的な部分に意識を向けると同時に、能力や意識の向上を支えるため、スキルの磨きにも力を入れていきます。 新たな体制はどう? また、4月の新年度からメンバーが変わったことで、これまでできなかったさまざまな取り組みが可能な環境が整ったと感じています。今回学んだことを意識し、メンバーとじっくり話し合いながら、より良いチーム作りを進めていくつもりです。まずは自分自身が思い詰めた表情や姿勢を見せないことが、リーダーとしての第一歩になると考えています。 実践にどう活かす? 学びで得た知識と経験を、これからの実践にしっかりと生かしていきたいと思います。メンバーの成長や成功を感じたときには、自分自身も成長し、勇気あるリーダーへと近づけたことを実感できると信じています。 業務効率はどう? さらに、業務の効率化を図り、少しでも多くの時間を確保するよう心がけたいです。自分自身の業務状況とメンバーの状況を把握しながら、業務が滞ることなく進むよう努め、リーダーシップとチームマネジメントを両立させて、常に余裕を持ってリードできるよう取り組んでいきます。

「時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right