戦略思考入門

差別化の盲点を見つける学びの旅

顧客目線の重要性とは? 差別化について日々悩んでいたため、今週の学習は特に有意義なものでした。特に、自分自身ができていなかった点や気をつけたいポイントとして以下の点が挙げられます。 まず、顧客目線が最も重要であることです。そして、「この点は差別化できるのでは?」と思う点があったとしても、一度立ち止まって考える必要があります。それは、差別化できると考えた点が、別の業界で既に得意としている施策かもしれないからです。また、視野が狭いと感じた場合には、フレームワークを探して利用し、抜け漏れがないように活用することが大切です。そして、どんなに差別化できても永続的な優位性は存在しないため、常に考え続ける必要があります。 差別化ポイントをどう見つける? 実際、今週は差別化できるポイントを考えることが業務の一環でした。自社として「こうしたい」「ここが差別化できる」と思いがちだったところを、「お客様にとって」という視点を常に持つよう意識しました。また、「自社の強みって何なんだろう?」と悩み、3Cなどを用いて分析しても腑に落ちない部分がありました。この件に関しては、現在VRIO分析を用いてより明確な差別化ポイントを見つける努力をしています。 既に行っている取り組みとしては、VRIO分析があります。また、見つけた差別化ポイントをポーターの3つの分類に分け、どれに当たるかを理解し優先度をつけています。 来週の戦略は? 来週取り組むこととしては、当初考えた競合だけでなく、差別化ポイントを既に実施している他の競合がいないかも確認する予定です。また、ポーターの3つの分類に分けた差別化ポイントについて、実現性だけでなく他の視点からも検討し、優先度付けを行います。最後に、関係者と話し合い、多様な意見を参考により良い施策を検討したいと考えています。

クリティカルシンキング入門

文章作成のコツを一気に学び解決!

文章構成での重要なポイントは? 文章構成の難しさを改めて学びました。以下の4点を今後の文章作成の際に注意したいと思います。 まず、①文章作成の際には、主語と述語を明確にすることが重要です。日本語では主語を省略しがちですが、明確にすることで読みやすくなります。次に、②一文を長くしすぎないように心がけます。一文は1行以内に収めることで、読みやすさが向上します。また、③ひとつの言いたいことに対して複数の理由づけを考えます。話を伝える相手にとってどの理由を伝えることが効果的かを考え、文章を構成します。最後に、④文章をいきなり書き出すのではなく、言いたいことの全体像をまず考えることが大切です。結論を支える要素を複数考え、文章化します。 実践するための具体的な場面は? これらのポイントを特に以下の場面で意識します。例えば、先輩社員や上司への相談では、自分の主張とその根拠を論理だてて説明できるようにします。また、メール作成時には、一文を長く書きすぎないようにし、主語と述語を意識しながら、文章をコンパクトにまとめることを心がけます。カウンセリングにおいては、相談者が迷っているポイントを考え、こちらが伝えたいこととその根拠を複数考えた上で、相手に合った内容を文章にして伝えるようにします。 継続的な学びの方法は? 今回の学びを改めてノートにまとめ、職場で確認できる状態にしておきます。また、先輩や上司への相談の前には、ピラミッドストラクチャーを利用し、主張したいこととその根拠を図式化してから話す順序を考えます。さらに、メールを作成した後に一度客観的に見て、長すぎる文章がないか、主語と述語が繋がっていないか、相手目線に立ってチェックすることを習慣にしたいと思います。 以上が今回の学びと今後の実践方法です。

データ・アナリティクス入門

あとひと手間!四段階で切り拓く解決力

どう問題解決する? 問題解決の基本プロセスとして、「What → Where → Why → How」の4つのSTEPを学びました。プロセスを細かく分解し、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性を強く感じました。日常の業務において、これらのステップをいくつも行き来しながら問題の原因を探る手法は、非常に実践的だと実感しました。 視点を変える意義は? また、仮説を立てる際には、問題に関わりがありそうな要素だけでなく、それ以外の視点にも目を向ける考え方が有益だと学びました。対概念で物事を考えるアプローチは、固定概念に囚われず幅広い視野で問題解決に取り組む姿勢を養うための大切なポイントです。 ABテストの真意は? さらに、ABテストを活用して施策の効果を比較し、条件を揃えた上でデータを分析するプロセスは、仮説検証の精度を高める上で非常に有効だと感じました。仮説を実践しながら効果を測定し、次のアクションにつなげる一連の流れは、今後の分析業務にも大いに役立つと思います。 離脱理由は何か? 加えて、ファネル分析によってユーザーの利用段階を明確に分解し、どのプロセスで離脱が生じているかを把握する手法も印象的でした。漏斗のように段階ごとに数値を追うことで、課題がどこにあるのかを具体的に把握できる点は、現場での運用改善に直結する大切な視点です。 実践で成長する? 全体として、これらのアプローチを繰り返し実践することで、柔軟かつ論理的な問題解決能力を養えると感じました。定量分析やアンケートを活用し、他者の視点も取り入れた説得力のある提案や、チーム目標の設定など、今後の実務や運用計画にも直結する内容で、非常に有意義な学びとなりました。

戦略思考入門

自己成長を促すビジネス視点の活用法

本質を見抜く力とは? 本質を見抜く力やメカニズムを捉える力は、ビジネスやプライベート、そしてキャリアにおいて極めて重要です。例えば、「返報性」の概念は、交渉やコミュニケーションの際に相手の意図を見極める上で役立ちます。この原則を活用することで、場当たり的な判断を避け、より再現性のある行動や判断を下せるようになります。 ビジネスでの理論活用法は? ビジネスでは、規模の経済や習熟効果、範囲の経済性、ネットワーク効果などの理論が重要です。特に規模の経済は交渉や社内調整において役立ちます。市場の指数関数的変化を理解し、これを活用することで、競争力を持つ企業へと成長できます。また、テクノベーションがビジネスに及ぼす影響を理解することもポイントです。 家族や友人との関係にヒント? プライベートな場面でも同様に、家族や友人とのコミュニケーションにフレームワークを用いることで意見の相違を解消できることがあります。子供の成長や学習においては、指数関数的変化を意識して柔軟に対応することが大切です。例えば、家電の活用や家具の選定においても同様の考え方が適用されます。 キャリアビジョンの設計法? キャリアにおいては、自分の特性を理解し、それに基づいたキャリアビジョンを設計することが求められます。習熟効果や範囲の経済性を利用し、自分のスキルを最も効果的に発揮できる環境の特定を進めることで、成長や成功に向けた次のステップを考えることができます。 実践を通じた成長の鍵は? 最終的に、これらの知識とスキルを実際に手を動かして試し、経験を積むことが重要です。具体的な行動とともに、時代やビジネス環境の変化にも柔軟に対応していくことが、自己成長や目的達成への鍵となるでしょう。

データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。

クリティカルシンキング入門

データを解剖して見えた営業の新展開

数字の活用法は? 数字を味方にするためには、分解して解像度を上げることが重要です。数字をうまく利用することで、問題箇所を特定しやすくなります。迷った時には、とにかく手を動かすことが肝心です。 データ加工の工夫は? まず、数字の加工に関しては、与えられたデータをそのまま使用するのではなく、自分で追加の欄を設ける工夫が必要です。仮説を持ち、どの単位で分解すると有益かを考えることがポイントです。 切り口はどう考える? 数字を分解する際の留意点としては、切り口をMECE(Mutually Exclusive, Collectively Exhaustive)で考えることが挙げられます。一つの傾向が見えても複数の切り口で他に傾向がないか探すことが重要です。傾向が見えなくても、それはそれで意味があります。 強みと弱みは? 営業成績の振り返りにおいては、担当者の強みや弱みを把握すること、代理店内の強みや弱みも同様に把握することが肝要です。また、品質に関しても同様に、担当者や代理店の強みと弱みを理解することが求められます。 業務分担と数値は? 業務適正化には、月間スケジュールと週間スケジュールの策定、および業務の分担が含まれます。さらに、営業成績の振り返りでは、まずは活用していた数字が正しかったかの確認から始め、決まった期間で得られる数値を把握し、分解する項目を決定。そして、その項目をルーティンで確認することが重要です。 品質分析はどう? 品質の振り返りにおいては、定められた数値に対して新しい切り口を模索するために時間をかけることが求められます。業務適正化では、現状の分析と必要業務の確認が中心となります。

クリティカルシンキング入門

伝わるプレゼンで未来を変える

分かりやすさの秘訣は? 説明やプレゼンテーションで最も大切な点は、相手がどれだけ理解しやすいか、そして心に残るかどうかだと改めて実感しました。まずは、目的と対象に合わせて伝えたいメッセージを明確にすることが基本であると感じます。 視覚工夫は効果的? その上で、メッセージの理解を助けるために、言葉遣いやフォント、色、アイコン、図表、グラフ、配置といった視覚的要素に工夫を凝らすことの重要性も学びました。これらの工夫は、伝えたい内容をより効果的に伝えるための手段となります。 分かりやすい事例は? 具体例として、上司への企画書では、従来口頭で伝えていたアイデアを文章と図表で分かりやすく表現することが求められます。また、学校説明会では、参加者に特に伝えたいポイントを際立たせるために、シンプルなスライド構成が効果的です。さらに、授業での説明スライドでは、生徒の印象に残りやすいよう視覚資料を活用し、内容の理解と定着を図っています。 事例分析はどうすべき? また、街のポスターや動画のサムネイル、他の人のプレゼンスライドなど、良いと感じた事例を分析し、自分なりの改善策として取り入れていく姿勢も大変参考になりました。ナノ単科のデータアナリティクスの授業で学んだ内容を活かし、目的に応じた図表やグラフを作成する能力も向上させることができました。 効率的資料作成は? 最後に、PowerPointのショートカットを積極的に利用することで、効率よく資料作成が進められる点も印象深かったです。このような取り組みを通じて、より効果的な資料作成とプレゼンテーション技法を身につけることができたと感じます。

データ・アナリティクス入門

データの先にある学びの秘密

講義内容はどう感じた? ライブ講義を拝聴しながら、ポイントを迅速に判断し整理する力がまだ十分でないと感じました。どのデータセットを扱う際にも、何を明らかにしたいのかという目的意識をしっかり持ち、ロジカルシンキングや仮説立案のスピードを高める必要があると痛感しました。大量のデータを扱う中で、解決策の発見に注力するあまり、次第に目的から逸れてしまうことが実務上でも生じるため、その兆候を早期に掴むことが重要であると改めて認識しました。 営業戦略はどんな課題? 営業データを活用した営業戦略の立案においては、成約率向上という課題に対して、これまでの商談データを基に再検証を行う必要があります。過去にはあまり意識されなかったデータの粒度の粗さや、文章化およびビジュアル化の不足が、組織全体の納得感に影響していたと感じます。具体的には、なぜ成約率が低いのか、セグメントごとや担当者ごと、そして営業ステップごとの課題を明確にし、それぞれの原因を検証した上で、効果的な解決策を導き出したいと考えています。 UX改善は何が必要? サービス利用データを活用したUX向上施策の立案では、SaaSサービスのアクセスログをもとに、どの機能が利用され、どの機能が利用されていないかを明確に分類することが求められます。使われていない機能については、導入時からの利用状況や徐々に利用が減少しているのかなど、その背景を整理しながら原因分析を行います。さらに、仮説を立てた上で改善策を検討し、場合によっては機能の廃止も含めた対応を実施するために、顧客へのインタビューなども通じて検証を進めていきたいと考えています。

データ・アナリティクス入門

仮説思考で業務が変わる!実践活用法

仮説活用はどう感じる? 自身の仕事において仮説を活用して、答えの決まっていない分析や問題箇所の特定を行うステップを有意義に利用しています。日々の業務が体系立てて整理できたことで大変役立ちましたが、フレームワークの活用についてはGail等を通じて不十分であると感じています。 仮説の役割は何? 仮説について、まず仮説とはある論点に対する仮の答えを指します。問題解決の仮説と結論の仮説の二つがあります。問題解決の仮説は、問題解決のステップにおける「where」の深掘りと「why」の原因分析に関する仮説を立て、それに対する検証のためのデータを集める段階が該当します。 仮説はどう絞り込む? 仮説を考える際のポイントとして、仮説を決め付けずに複数立てること、そしてそれらの仮説が互いに網羅性を持つようにすることが重要です。また、仮説を構築する際には、3Cや4Pなどのフレームワークを活用することが有用です。データの収集においては、誰にどのように聞くか(アンケートや口頭)が重要なポイントとなります。 業績管理の真因は? 自分が担当している業績管理の業務では、計画と実績の差異を分析し、真因を把握し、改善策を立案することが求められます。このため、問題箇所の特定、原因の分析、仮説に対するデータ収集のプロセスは非常に役立ちます。 検証成功の理由は? 今週において、仮説を活用したデータ検証が成功し、部門長の了解を得られた経験があります。今後も問題解決の手順と仮説、データ収集のプロセスを効率よく業務に適用していきたいと思います。

アカウンティング入門

損益計算書で読み解く経営の秘密

損益計算書の本質は? 損益計算書は、企業の運動成績表のようなものです。水泳の例えがしっくりきており、力いっぱい泳いでも、抵抗が大きければ進む距離は短くなります。同様に、しっかりと力を発揮しながらも、無駄な動きを省いて抵抗を減らすことの大切さを学びました。この点から、人やモノがいかに無駄なく効率的に利用されているかという観点も考えるようになりました。 実例で何が分かる? また、カフェのケーススタディや図表を用いた具体的な説明により、それぞれの違いが明確に理解できました。さらに、前年比や同業他社との比較を通して、損益計算書の各指標をどのような観点で見るべきかを学ぶことができました。特に、同業他社との比較は、自社のどの部分が優れているのかを認識する良いきっかけとなりました。 財務分析のポイントは? 具体的には、今後、経営会議で取り上げられる損益計算書についての議題や、月単位で回ってくる損益計算書の分析に積極的に活用したいと考えています。また、自身で損益計算書を見た際に、昨月と比較して原価が高かったり、経常利益が芳しくない場合、その背景にどのような要因があるのかといった疑問を自然に持てるような状況を作り出したいと思います。 情報はどう活かす? 幸運なことに、会社ではこうした財務諸表の情報がオープンにアクセスできる環境が整っているため、朝一番のタスクとしてチェックすることから始めようと考えています。経営会議にも参加できる環境にあるため、会議での発言を通じて、学んだ知識を実践していきたいと思います。

クリティカルシンキング入門

振り返りで変わる私の未来

文章はどう伝える? 相手に伝わる文章や資料作成においては、ただ情報を羅列するのではなく、読み手がすぐに理解できるよう、整理された構造と流れを意識することが大切だと学びました。単なる数字や文字の羅列ではなく、必要な情報が一目でわかるように、無駄な言葉を省きつつ具体的な内容を盛り込むことが求められます。 図表はどう活かす? 資料作成では、グラフや図表を効果的に用いるため、まずは単体の数値やデータに適切な単位の記載を行い、その後、データの性質に応じたグラフ(時系列データならば棒グラフ、変化を示す場合は折れ線グラフ、要素ごとのデータなら横グラフ)を利用して全体を俯瞰できるように工夫します。また、フォントや色、アイコン、強調表現の使い分けにより、伝えたいポイントと図表の整合性を持たせることも重要です。 メールはどう構成? メール文章については、結論を最初に示すとともに、題名や書き出しに相手の興味を引く工夫を施し、リード文から注意を引く構成にすることが大切です。文章全体も項目分けや箇条書きを取り入れ、情報を整理して分かりやすく伝えるよう努めています。 学びをどう確認? これまで学んだ数字の分析や日本語表現の技法、資料作成のポイントを振り返り、デスクトップにまとめた内容を常に確認しながら業務に取り組むことが、効果的な資料作成への近道であると感じています。完成した資料は、まるで「もう1人の自分」がチェックしているかのように、全体の整合性や論理性を見渡して仕上げることを心掛けています。

データ・アナリティクス入門

仮説の問いで開く成長の扉

仮説をどう言語化する? データを見る前に「こうなりそう」と感じるのは、すでに仮説を持っている証拠だと感じます。経験や直感から「この傾向があるかも」と思うことが、後に重要な指標を絞り込むための手がかりとなります。そのため、仮説をしっかりと言語化し明示することはとても大切です。 仮説検証の効果は? 仮説が明確であれば、どの指標に重点的に注目すべきかが分かり、仮説が外れた場合でも「なぜ違ったのか?」という質問が自然に浮かび、スムーズに分析の焦点を絞ることができます。こうした仮説検証のサイクルを回すことこそが、データ分析の醍醐味であり、成果につながると考えています。 設備トラブルの影響は? 実際、稼働分析を日常的に行う中で、「おそらく設備トラブルの影響で停止が増えたのではないか」という仮説を立て、その検証に利用するデータを慎重に選定しながら、表面的な課題ではなく本質的な改善ポイントにたどり着こうとしています。 なぜをどう掘り下げる? また、分析業務において「なぜ?」と問いを繰り返すことを意識しているものの、これまで1~2回の掘り下げで思考を止め、表面的な原因に留まってしまうことが多かったと自覚しています。しかし、データ分析は正解のない問いに対して行うものであり、仮説や着眼点の精度が成果を大きく左右します。そのため、日常業務や分析の過程で「なぜを5回」繰り返すことを意識し、仮説が外れたときもすぐに切り替えず、なぜ違ったのかを徹底的に深掘りすることが重要だと感じています。

「ポイント × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right