データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

データ・アナリティクス入門

迷走も学びに変える仮説実践

集客の見直しはどう? 実践において、当初「集客」を問題と考えていたものの、活動を進める過程で「集客」を見失い、結果として問題の本質に気づくのが遅れてしまいました。この経験から、目的を常に意識しながら進める重要性を再確認しました。 仮説の多角的検証は? また、動画講義では仮説思考の実践方法について学びました。複数の仮説を網羅的に検討し、一つだけに頼るのではなく、多角的な視点から論点を捉える必要があると実感しました。反論を受け入れる姿勢や、都合の良いデータ集めを避けることで、仮説が誤っている場合にも柔軟に見直すことができるという点に大きな気づきがありました。 仮説の役割は何? さらに、仮説の種類やその役割についても理解を深めました。論点に対して仮の答えを示すコミュニケーション仮説と、問題を解決するための問題解決仮説といった区分や、失敗の原因究明といった過去の事例、あるいは未来の展望に基づく仮説があることを学びました。これらの仮説に検証計画をセットにして進めることで、説得力が増すことを実感しました。 学びと実践の道は? 今後は、複数かつ網羅的な視点で仮説を立てるため、各種フレームワーク(例:4Pや3Cなど)を積極的に学び、状況に応じて最適なものを選ぶ意識を持ちたいと思います。同時に、仮説と検証をセットにした提案を自分自身だけでなく、チーム全体で実践することが重要だと考えました。

データ・アナリティクス入門

データ分析力で未来を切り拓く

比較で何を探る? 「分析とは比較なり」という言葉が示すように、分析を行う際には、条件を整えて比較し仮説を立てることが重要です。この手法は、日常的にデータを扱う作業の中で非常に役立っています。例えば、全国推奨品になった製品のシェアが推奨される前後でどの程度伸びているのか、値下げ要求に応じた場合に売上がコストダウンのインパクト以上に増加したかどうかなどの質問です。 目的と条件はどう? 分析を始める前に、分析の目的とデータの条件がしっかりと整っているかを確認します。目的がはっきりしていなければ、分析結果は曖昧になり、有益ではなくなってしまいます。また、「生存者バイアス」という思考に陥らないように、成功体験だけでなく失敗からも学ぶ意識を持ち続けたいと思います。たとえば、競合との製品コンペに勝つためには過去の成功事例から学ぶだけでなく、敗北したケースの反省点を検討し、どこが競合よりも劣っていたのかを追求していくことが重要です。 データの見せ方は? さらに、データの見せ方も大切です。数字やパーセンテージで示すべきか、どのようなグラフを使用するかを考え、視覚的に訴える効果的な方法を選択することが求められます。こうした分析の技法や思考法は、データを扱う日々の作業の中で重要な役割を果たします。ファクトに基づいた正確な分析結果を出し、それを適切に伝えられるように努めていきたいと思います。

データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

データ・アナリティクス入門

AIとフレームワークで広がる問題解決の可能性

AIをどのように活用する? まず、難解な問題解決に向けて、AIを積極的に活用することの重要性を学びました。問題の解決策を探る際、AIの力を借りて多様なアプローチを試みることで、解決の糸口を見つけることができました。 フレームワークの活用法は? 次に、広がった可能性の中から決断を下すのは自分自身ですが、その際にフレームワークを活用することです。より的確な判断を下すために、フレームワークとAIを組み合わせて問題解決を進める方法を学びました。 曖昧な質問でどう思考を広げる? 最後に、従業員に疑問や課題を投げかける際、あえて曖昧な質問を意識的に行うことで思考の幅を広げることです。視点を広げるために曖昧さを残した質問を活用し、従業員の自主的な思考を促進することが効果的であると感じました。 加えて、諦めずに問題と向き合い続ける姿勢を持つことの大切さも再認識しました。特に経営データの分析においては、簡単な答えが見つかる問題は存在しないと思われます。その中で、仮説を繰り返し立てて検証し続けることでしか、問題解決には到達できないと考えました。 持続するために必要なメンタリティは? 諦めない姿勢を持ち続けるために、AIも活用しつつ、自分自身のメンタリティを鍛えることが重要です。問題と向き合い続け、逃げず、他責にせず、必ず解決できると信じて立ち向かう意識を持ち続けたいと思います。

データ・アナリティクス入門

問いを絞れば未来が見える

イシューの本質は? まず、データに飛びつく前に、何に対して答えを出すのかという根本的な課題―イシュー―を明確に整理することが大切です。イシューは、Yes/Noといった二つの選択肢程度に絞ることで、分析がしやすくなります。 数値比較の意味は? 次に、単一の数値だけでは状況が判断しにくいため、2つ以上の数値を用いた比較分析の重要性が浮き彫りになります。この手法により、数値同士の関係を明確に理解し、正しい判断を導き出すことができます。 業務シーンはどう見る? 業務シーンでは、キャパシティプランニング、リリース影響の判定、障害対応時の原因切り分けなど、様々な場面でこの考え方が活用されています。特にキャパシティプランニングの場合、ただ「リソースは足りているか?」と漠然と問いかけるのではなく、「現在の増加ペースが続いたとして、3ヶ月後にもリソースが十分確保できるか?(Yes/No)」と問いを明確にすることが求められます。 予測と対策はどうする? 具体的な取り組みとしては、過去のトレンドから3ヶ月後の予測使用量を算出し、実際に利用可能な物理的リソースの上限値と比較します。もし予測値が上限に近づく、または超える場合はリソースの増強が必要であると判断し、迅速な対応を実行していくこととなります。このプロセスを繰り返し実践することで、業務全体の質の向上につながっています。

データ・アナリティクス入門

仮説と仲間が拓く未来

どうやって仮説を立てる? データ分析を始める際、いつもありがちな仮説で立ち止まっていた自分に対し、3Cや4Pといったフレームワークを活用して思考を整理し、仮説を立てる方法を学びました。仮説は単に立てるだけではなく、その検証も極めて重要であり、さらに施策を講じる際には顧客目線が不可欠であることを改めて認識しました。 意見交換は必要? また、仮説やアイディア出しの過程で、当たり障りのない意見だけではなく、否定的な意見や斬新な発想を取り入れることも必要だと感じました。一人の意見では偏りが生じやすいため、同じ目的に向かって柔軟な視点を持つ仲間との意見交換が、より良い施策を生み出す鍵になると実感しました。 基本指標をどう見る? さらに、Webマーケティングの基本的な指標であるPVやUUなどの知識は、今後欠かせない領域であると認識し、引き続きツールなどを活用した学習を進めていきたいと思います。過去にカスタマージャーニーマップを作成した経験から、自分とは異なる属性の視点を取り入れる重要性を痛感し、今後はより多様なシチュエーションを考慮して視野を広げる努力を続けたいと考えています。 集計分析で何が見える? また、クロス集計分析の手法は、現在携わっているアンケート業務において大いに役立つと感じ、今後も定量的な面から分析を深堀していくつもりです。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

クリティカルシンキング入門

イシューを見抜く成長の軌跡

どうやってイシューを特定する? 進め方としては、まず答えを出すべき問い、すなわちイシューを明確に特定します。その後、論理の枠組みを考え、主張を適切な根拠で支えるという基本の流れを踏むことが重要です。作業を進める中で、イシューを常に意識しながら進めるべきであり、過去にはイシューから逸脱したまま次の作業に移ってしまった経験があり、今後はその点の改善が求められます。 なぜ顧客評価に課題が? また、顧客評価で問題が生じた場合や戦略がうまくいかない状況では、単なる対症療法にとどまらず、根本的な問題が何であるかを特定し、メンバー間で共有することが必要です。特に、エンジニアの方々と仕事をする際には、視点が異なることが多いため、まずは共通してイシューを明確にし、現在の状況と今後の方向性をしっかり合わせることが大切だと感じました。 どうやって情報整理をする? さらに、各顧客ごとにイシューを特定し、現状理解のためにMECEやデータ分析を実施すること、そして顧客との面談前や会議での参加者間のゴール設定が求められます。資料作成の際は、まずデータを整理し、その後報告資料の構成を考え、スライドごとのメッセージを作成していくという流れを守り、順番を変えないように進めることが重要です。会議中もイシューから逸脱しない進行を意識することで、解決策へと着実に導くことができると感じました。

クリティカルシンキング入門

課題解決の秘訣は「問いのブレ」防止

イシュー特定はなぜ重要? イシューの特定の重要性を改めて実感しました。それ以上に「問い」の方向性をブレないよう意識し続けることの重要性に気付かされました。課題を特定し、イシューを設定した後、実際に分析や議論に移る際、この「問い」がブレることが多々あります。気づけば最初に設定したイシューからずれた議論をしていることが何度もありましたので、改めて見直したいと思います。 データ分析で避けたいミスは? データ分析においては、「問い」の方向性がブレてしまい後で気づき、やり直しが発生することがしばしばです。数字に触れ始めると、「分析」に夢中になり、本来の目的を見失ってしまうことがよくあります。特に注意すべきは「やった気になってしまうこと」であり、過去の経験を通じてこれを痛感しました。この講座を通して学んだフレームワークを意識し、同じ失敗を繰り返さないようにしたいと思います。 言語化の効果とは? 「イシューを押さえ続けること」は「意識」するだけでは難しいため、言語化を必ず意識したいです。言語化することで、自分だけでなく、周りの方との認識統一にもつながります。これができると、自分が「問い」からずれていても、「誰かが気づき」修正してもらうことができます。自身の考えを客観的に見ることは重要ですが、完璧にはできません。常に第三者のヘルプも借りながら進めたいと思います。

データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。
AIコーチング導線バナー

「過去 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right