データ・アナリティクス入門

ロジックツリーで拓く課題解決

正常と理想は何が違う? 正常なあるべき姿とのギャップを解消するだけでなく、現在の正常な状態からありたい姿へのギャップを埋めること自体もひとつの問題解決だという考え方は非常に印象に残りました。 ロジックツリーはどう使う? また、ロジックツリーという手法について学び、その分解方法に層別分解と変数分解があることを理解できた点も大きな収穫でした。MECEの原則を意識することで、分析において情報の漏れや重複を防ぎ、ビジネスチャンスを逃さないための重要性を再認識しました。 受け手は誰に焦点か? さらに、臨床検査サービスの受け手は患者だけでなく、医師やその他の医療スタッフなど多岐にわたるため、どの受け手に焦点を当てるかを考慮する際にロジックツリーが有効に活用できると感じました。実際、臨床検査のプロセス改善においては、層別分解を用いて「人」に関する問題と「設備」に関する問題に分けて検討するという具体的なアプローチが示唆されており、実務の現場でも役立つと実感しました。

デザイン思考入門

予期せぬ挑戦で深まる学び

経営層とのズレは? 総務の分野では、明確なゴールや課題意識が設定された状態で業務が依頼されることが多く、経営層と現場の考え方のズレを常に意識しながら問題解決に取り組む重要性を感じました。経営側が示すのは課題定義までであるため、実際に試作品を作る過程で予期せぬ問題が発生することを体験し、学びが深まりました。 AIデザインはどう? 生成AIを活用してデザインを作成する試みは、予想以上に難しいと感じました。自分のイメージを正確に反映させるためには、プロンプトの使い方をさらに工夫していく必要があると感じています。また、思いもよらない結果が得られることもあり、試行回数を意識することが大切だと思いました。 試作の修正ポイントは? 加えて、生成AIの利用はもっと意識的な操作が求められる点、試作後に自ら修正箇所を見出す経験が得られる点、そしてデザイン思考入門で学んだ手法が、自分の予想を超える、または改善された成果を生み出す可能性があることを実感しました。

リーダーシップ・キャリアビジョン入門

問いかけの力でチームを活性化!

聞くためのプロセスとは? 聞くためのステップを明確にしておくことが大切だと思いました。何となく聞くのではなく、コーチングプロセスのように「理想は何か」「現状は何か」「GAPは何か」「GAPを引き起こしている要因は何か」「改善策は何が考えられるのか」を意識して聞くことが重要です。 具体的な質問テクニックは? まず、Whatとして「何が問題だったのか」「課題だったのか」をメンバーの意見を聞いてみます。次に、Whereとして「どこに問題があったと思うか」を尋ねます。さらに、Whyとして「何が成功要因」「失敗の原因だったと思うか」を聞いてみます。そして、Howとして成功要因を継続するために何ができるとよいか、失敗の原因を改善するために何が必要かを問いかけます。最後に、「いつから何を着手するか」「いつまでに何ができていると順調か」を確認します。 継続的な対話の実践法 これらのステップを紙に書いてパソコンに貼っておき、1対1の対話の際に活用していきます。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。

アカウンティング入門

財務分析で見出す成長戦略の鍵

PLのポイントを押さえるには? PL(損益計算書)の仕組みを理解し、各利益間に注目することで、どの部分に費用がかかっているのかを把握できることがわかりました。粗利を上げるためには、提供する価値を明確にし、それに見合う価格設定が重要であることを理解しました。 財務諸表で何が見える? 自社と競合他社の財務諸表を確認し、どこに費用がかかっているのか、自社と競合との違いを分析するために活用したいと考えています。さらに、異なる業界の会社の財務諸表を通じて、業界ごとの差異を理解することも目指しています。 IR情報で業界特徴を学ぶには? 自社および競合他社のIR情報を確認し、利益構造にどのような違いがあるのかを把握したいと思っています。また、異業種の会社のIR情報も調査し、業界特有の違いについて学んでいきたいです。そのうえで、自社の課題が見つかった場合、なぜそのような状態になっているのか、そしてどのように改善すれば良いのかを考えていきたいと考えています。

クリティカルシンキング入門

イシューで変わる会議の効率化

なぜ課題を明確に? イシューを明確にすることで、考えるべきことや取り組むべき事柄がはっきりと理解できることを再確認しました。最終的な目的が何であるかを認識し、現時点でその目的に対して何を決めなければならないのかを冷静に考えることが課題の明確化において重要です。 どうして会議で有効? 会議や意思決定、仕事の優先順位付け、業務内容の策定など、様々な場面でこのアプローチは有効です。特に会議では、イシューが忘れ去られがちなので、意識することで改善が期待できます。また、企画資料においても、本来の目的からズレないように意識して改善する必要があります。 どうして軌道修正が必要? 特に会議では、参加人数が増えることで話が広がり、議題が落ちてしまうことがしばしばあります。このため、初めに課題設定をしっかり行い、その後も必要に応じて軌道修正を行うことが重要です。企画資料においては、課題が複数挙がる場面では、論理構造を整理して話を展開するよう心掛けます。

データ・アナリティクス入門

数字が語る!ストーリー分析

各要素はどう繋がる? 今週は、分析にはストーリーがあるという重要な視点を学びました。What、Where、Why、Howという各要素を明確に把握し、各段階のアクションが前の段階とどのようにつながっているかを振り返ることで、無駄のない論理的なアプローチが可能になることを実感しました。 数字の意味はどうなる? また、分析の前提として数字と率の両面から取り組むことの大切さを認識しました。これにより、現時点で顕在化している問題が自部門にとって大きな課題なのか、あるいは今回は重要な対策の対象ではないのかを判断できるため、効果的な意思決定の材料となります。 自分の考えは正しい? 今後は、自分でテーマを設定し、日々の業務データに基づいた分析や検証を積み重ねていきたいと思います。報告資料には自分の考えや仮説を取り入れ、チーム内で説得力のある説明を行うことで、今後の活動に役立つ具体的な提案を実施し、都度見直しながら継続的な改善を図っていきます。

データ・アナリティクス入門

説得力を生む加重平均の真実

分析視点は何が肝心? 今回の学習では、分析において比較する5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)を意識することの重要性を再認識しました。また、平均値として単純平均、加重平均、幾何平均、中央値といった代表値の違いについて学び、特に加重平均と幾何平均が今後の業務で役立ちそうだと感じました。 平均選択のポイントは? これまで実務では単純平均を使用してきましたが、利益が低下している部分に焦点を当てるためには、加重平均を取り入れることで事業の取捨選択がより明確になると気づきました。加重平均を用いれば、経営陣に現状の課題を整理し、改善提案を行う際に説得力が増すと考えています。 幾何平均はどう見る? 一方、幾何平均は計算が複雑なため、現状では取り扱いが難しい印象を持ちました。しかし、来年以降の利益率成長率を算出する際に有用な指標となる可能性があり、将来的には利益予測の精度向上に寄与できるのではないかと期待しています。

デザイン思考入門

現場で輝く!成長の足跡

具体解決にどう挑む? 市民の困りごとに対しては、ただ単に共感するだけでなく、具体的な解決に向けた行動を促すことが求められます。そのため、課題が解決されない場合にどのような影響が起こるのか、また問題が解消されたときにどのような良い結果が得られるのか、具体的なイメージを持ってもらえるよう働きかける必要があります。 動機はどう高まる? ただし、重要な視点が共有され一部自分ごととして捉えることができているものの、現状維持の心地良さを捨ててまで動こうとする強い動機付けには至っていません。実際に取り組んで成果を上げている現場の事例を示すことで、説得力をさらに高めることが望まれます。 本質をどう見抜く? さらに、目に見える現象だけを改善しようとするのではなく、その背後に隠された問題の本質を見極めることが大切です。ユーザー視点を一人だけのものに留めず、問題解決の鍵を握る関係者とも情報を共有し、本質につながる情報を集め届ける姿勢が求められます。

データ・アナリティクス入門

フレームワークで学びを変える

フレームワークの意義は? 仮説の基本的な理解を改めて振り返ることができました。これまで、どちらかというと自分のバイアスに左右されることが多かったですが、3Cや4Pといったフレームワークに沿って物事を進める習慣が必要だと実感しました。もちろん、データの活用において都合の良い点に気付いてしまう傾向もあり、そこは今後の課題です。 チーム作業に注意すべき? また、実際の業務においては、ある程度の人数で構成されるチームで作業を進める場合、フレームワークを用いる際に工夫が求められることを改めて認識しました。それでも、基本に則って作業を進めることが、合意形成を図る上で重要であると感じました。 合意形成、どう進める? 変革やシステムの刷新・改善といった業務では、関連部門との合意形成が不可欠です。こうした基本的なプロセスをフレームワークに落とし込むことで、問題の根本をより深く理解し、具体的なアクションプランを立てることができると考えています。

クリティカルシンキング入門

立ち返る学び、成功の鍵を握る

改善点は何だろう? 資料をユースケースに落とし込むことで、改善点や事業の課題が明確になる一方、思考が偏り大切な課題や解決策を見逃してしまう可能性があると感じました。目先の答えに飛びつく自分の傾向を理解し、立ち返って他の要素も検討すべきだと気付きました。 関係構築はどうする? 新規事業の開発に向けては、広範な顧客―自治体から民間企業まで―との関係構築が必要です。そのため、説明や相談を行う相手がどのような人か、どんな情報を求めているのかを事前に把握し、相手の立場に立ったわかりやすい説明を心がけることが重要だと感じました。 具体策は整ってる? 具体的には、まず①相手の立場や求める情報を想定し、次に②その情報を論理的かつシンプルな形で提供できるように資料や提案内容を作成します。さらに、③相手の視点に立って説明のシミュレーションを行い、疑問点がないかを確認します。これらのプロセスを日常的に実行できるよう努めたいと思います。

データ・アナリティクス入門

3C×4Pで解く故障改善の秘密

複数視点って何が肝心? 修理データの分析では、仮説構築の際に一面的な見方にとらわれず、複数の視点から網羅的に考えることが不可欠です。今回学んだ3C(顧客・自社・競合)や4P(製品・価格・流通・販促)のフレームワークを活用することで、故障原因や改善のポイントを多角的に把握できるようになりました。 故障原因はどう見える? たとえば、顧客視点では使用環境や年齢層による故障傾向が考えられる一方、自社視点では特定の機種や部品の設計上の課題に着目できます。また、競合視点では他社製品との比較による違いを仮説にすることも可能です。さらに、製品ごとの故障率や価格帯、販売地域ごとの傾向にも注目し、それらを関連付けながら仮説を検証していくことが求められます。 課題解決の鍵は何? このように、フレームワークを効果的に活用しながら問題解決に取り組むことで、修理データに潜む課題をより具体的かつ明確に把握することができるようになりました。
AIコーチング導線バナー

「課題 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right