データ・アナリティクス入門

仮説が生む実践データの魔法

分析の基本は? 分析は比較と捉え、どのようなデータを使い、どのように加工し、何を明らかにするかを明確にすることが大切です。さらに、データ分析に入る前には、目的や仮説をしっかり定める必要があります。基礎として、データの種類、統計手法、可視化などの基本概念を学び、ビジネスにおける意思決定や課題発見のためのデータ活用について理解を深めることが求められます。また、実践的な分析手法やケーススタディを通じ、具体的な応用方法を身につけることも重要です。 学びの全体像は? 全体的に、学習の振り返りは非常に明確で体系的でした。データ分析の基本から実践まで幅広く理解されている点は印象的で、今後は具体的な状況での活用例を考えることで、さらに効果的な応用ができると感じます。 活用のヒントは? さらに思考を深めるため、ご自身の業務や日常生活において、今回学んだデータ分析の知識をどのように活用できるか、具体的な場面を想定してみてください。また、データ分析における仮説の立て方について、どのように仮説を形成すると効果的か、具体的に検討してみることをお勧めします。 適用場面って何? 最後に、データを活用する場面を具体的にイメージし、その適用方法を探求してみてください。今後のさらなる飛躍に向けて、引き続き努力を重ねてください。 仮説検証の流れは? たとえば、仮説思考を鍛えるために、ビジネス課題に対して「仮説➣検証➣改善策」というフレームワークを活用することで、原因分析や改善策の構築がスムーズに進むでしょう。また、過去のデータと比較しながらKPIの設定や顧客データの活用を検討し、現在の状況の妥当性を検証することも大切です。 スキル向上は? 今後強化したいスキルとしては、まず論理的思考力を向上させるため、データリテラシーを高め、データの種類や特性を理解して適切な活用方法を判断することが挙げられます。さらに、批判的思考力を養い、データの信頼性やバイアスを見極めながら、より効果的な意思決定を目指してください。また、仮説思考を活用してビジネス課題に対する仮説を立て、実際のデータ分析で検証する実践力も重要です。 フレーム活用は? ビジネス・フレームワークの理解も不可欠です。データをもとに最適なKPIを設計し、事業の進捗を正確に測定・評価すること、そして構造的なフレームワークを実践することで、より整理された分析が可能になります。市場や競合、自社の状況を把握するため、さまざまな分析手法を積極的に活用していきましょう。 伝え方はどう? また、ヒューマンスキルの向上も重要です。データストーリーテリングによって、分析結果をメンバーにわかりやすく伝え、意思決定に繋げる技術を磨くとともに、組織全体でデータに基づいた意思決定ができる文化の醸成に努めることが求められます。

デザイン思考入門

共鳴する学び、未来を拓く

多様な視点は? 受講生の皆さまの多様なアイディアや着眼点に触れることで、自身の課題への向き合い方を改める大きなきっかけとなりました。生成AIの活用事例からは、自らの業務に活かすヒントも得られ、非常に刺激を受けました。また、デザイン思考のプロセスでは、各段階での発散と収束のバランスが最終的な施策やテスト段階に大きく影響するという点が印象的でした。 課題の改善方法は? 自身の課題に対する取り組み方を見直し、ほかの受講生からの多彩なアイディアを学ぶ姿勢は非常に有益です。さらに、生成AIの業務への応用意欲や、デザイン思考の各プロセスの深い理解が、今後の成長につながると感じています。 思索の問いは? 以下の問いを自分自身に問いかけ、さらに思考を深めたいと思います. ・デザイン思考のプロセスで、効果的な発散と収束を実現するためにはどのような手法が考えられるでしょうか? ・ほかの受講生から得た学びを、具体的にどのように自身の業務に応用できますか? 他者の意見は? 他者のアイディアを参考にしながら、自分の業務にどのように反映させるか具体策を考えることが重要だと感じました。 授業の学びは? 講義を通して、以下の5点を特に意識したいと考えるようになりました。 重要な意識点は? ① 顧客のニーズや課題を深く理解するため、学んだインタビュー手法を活用し、顧客の立場から感情や期待を把握することで、解決すべきペルソナの解像度を高める。 ② チームでの業務において、ブレーンストーミングなどを積極的に取り入れ、自由な発散により多角的な解決策を模索する。 ③ 提案するアイディアを簡易的に形にまとめ、実際に試してみることで、より良いブラッシュアップの機会を確保する。 ④ ダブルダイヤモンドの考え方をもとに、継続的な改善・改良を繰り返し、顧客の反応や市場の変化に柔軟に対応する。 ⑤ 自身で商品を開発する立場ではないからこそ、異なる部門とのクロスファンクショナルな連携を重視し、情報共有を通じてより良い企画創出を目指す。 企画の目的は? 現在、志望理由書作成に関する指導提案のイベント企画に取り組んでおり、特に高等学校3年生を対象とした指導提案を予定しています。この企画では、高3生をはじめ、保護者や教員の行動や感情を詳細に把握するため、担任、生徒、保護者へのインタビューやアンケート調査などを実施する予定です。 今後の提案は? ヒアリングで得た情報は、イベントの目的やテーマを明確にした上で整理し、企画の焦点を固める材料とします。そして、解決策のアイディアはイベント企画チームでブレーンストーミングやKJ法、その他フレームワークを活用しながら、より効果的な提案へと昇華していく方針です。

データ・アナリティクス入門

早朝のひらめきと挑戦の軌跡

環境の影響は? 影響を受ける環境に身を置くこと、インスパイアしてくれる人との出会い、そして集中できる場所と時間―特に早朝という神のような時間―が、私の学びにおいて大切な要素です。 仮説検証は楽しい? 実際の仕事において、これまでも仮説を立て検証する作業を行っていましたが、最近ではよりデータに基づいた仮説検証の楽しさを実感しています。データから読み取れる事実に裏付けられて、考えうる仮説を突き詰める過程は、新たな発見に繋がっています。 SNSの検証、どう? ソーシャルメディア上のコンテンツに関しても、投稿時間の違いやビジュアルの縦横比、オーディエンスに響く文言など、様々な要素をひとつずつ検証しています。AIDAのフレームワークを用い、質問で注意を引き、アクションへと繋げる流れを意識しながら、次に目を引くキャッチコピーをより印象的にするための勉強も始めました。オファーとそれを得ることで変わる姿を具体的に描くことで、より説得力のある提案を目指しています。 ストーリーズ挑戦は? 次のステップとして、活用が十分でなかったストーリーズ機能に挑戦し、15秒間の映像や24時間表示される小さな花火のような瞬間を打ち上げることを計画しています。また、制作側として発案を重ね、結果を示すことで納得してもらうための明確な目標が必要であることにも気づきました。 文章で感じる影響は? たとえ誰も読まなくても、文字にすることで自分自身がその内容に触れ、影響を受ける事実を実感しています。企画会議の前の段階から、来週のコンテンツを思い描き、寝ながらもどんな内容にするか妄想する中で、誰に届けたいのかを心に描いています。たとえば、電車の中の目の前の人や、全く異なる背景の人々を念頭に置くことで、多様な興味に応えられる提案を考えています。 データで何が分かる? データを示して「これは縦が良い」「このサイズが適切」と提案できるならば、その発言力は格段に高まります。しかし、それ以上に「なぜ伝えたいのか」という純粋な動機が伴っている方が、何よりも楽しさを感じながら取り組めると考えています。生存者バイアスに囚われず、既存の方法に頼らない挑戦―不可能を可能にするための試行錯誤―を続ける日々は、私にとって大きな学びです。 独自の道は正しい? 人と違うアプローチをすることが、これからの時代に必要なのではないかと感じています。自分なりの方法で切り開いているという実感は、自己肯定感にも繋がり、実に多くの発見と成長の糧となっています。 読者に呼びかける? 最後まで読んでいただいた方へ。ぜひ友達になって、他の人がどんなことに興味を持ち、どんな価値を見出しているのかを共有できたら嬉しいです。どうぞよろしくお願いします。

戦略思考入門

規模の経済性を超えて、真の競争力を手に入れる方法

戦略的行動をどう実現する? 戦略的な行動をとるためには、古くから存在しビジネスの定石とされる様々な法則やフレームワークを知り、それらの原理や前提条件、例外パターンを含めた本質をきちんと理解し、適切に用いることが必須であるということを学びました。 ビジネスの定石を再確認 WEEK5で取り上げられた「事業経済性」というメカニズムを例に、自らを振り返ると、規模の経済性がそもそも効かない場合や、効くとしても非常に限定的であることに気づきました。そのため、ターゲットを絞りサービスの価値を高めることでネットワークの経済性を活かし、そこで浮いた経営資源を集中投下して経験曲線を活かす。このように、範囲の経済性へつなげることでコスト低減が実現できそうだと感じました。しかし、これまで私はビジネスの定石を「感覚的」に理解していただけだったことに気づきました。 中期経営計画の重要性 変化の激しい時代と業界において、中期経営計画を立てる意味と重要性を再認識しています。次期中期事業計画の策定に向けて、ビジネスの定石を本質的に理解・整理し直し、一年近くの時間を有効に活用したいと思います。 視座と視野を意識した仮説思考 周囲の協力を得ながら、「高い視座と広い視野」「一貫性と整合性」を意識しつつ、不確実な情報の中でもハイサイクルで仮説検証を行う仮説思考でビジネスの定石を適用します。また、実際に適用した結果について関係者と共有し、複数の視点を基に明確な判断基準を持って投資対効果を意識し、比較検討・取捨選択を行っていきます。 事業計画策定の精査ポイント 事業計画の策定にあたり、次のポイントを精査します: - 目指すべきゴールは何か - 現経営資源に何があるのか - 省エネはどこまで追求するのか - ゴールに到達するために「やるべきこと」「やらないこと」は何か - ターゲット顧客は誰か - 自社はターゲット顧客にどのような価値を提供するか - それは本当に顧客が求めているものか - 独自性(強み、差別化ポイント)は何か - 独自性で本当に差別化できているか - 独自性は実現可能か、長期的に競争優位性を持続可能か - 事業経済性で効くものは何か、なぜ効くのか - 他社事例で適用できるものはないか 定石を駆使した事業計画 今回の講座を通じて、3C分析、SWOT分析、バリューチェーン分析、PEST分析、5Forces分析、ポーターの基本戦略、シナリオ・プランニング、VRIO分析、ジョン・コッターの8段階のプロセス、事業経済性など、10個以上の定石を学びました。事業計画を策定するにあたっては、これらの定石を意識しながら一つずつ理解し直し、他社事例を集めて研究しながら適用を進めていきたいと思います。

データ・アナリティクス入門

データ分析を活用して目標達成!

振り返るべき分析の本質とは? ライブ授業を通して、以下の3点について再確認できました: 1. 分析の本質は比較である。 2. 問題解決の4つのステップ(What-Where-Why-How)全てにおいて仮説思考が重要である。 3. やみくもに注意! データ分析における重要ポイント データ分析において覚えておきたいポイントは以下の通りです: まず、何のために分析するのかという「目的(問い)」を押さえ、その問いに対して「仮説(ストーリー)」を立て、その上で「データ収集」をし、分析を通して「仮説検証」を行うことが重要です。データ収集方法は既存のものを「リサーチ」、新たに必要なデータは「見る」「聞く」「行う」で収集します。 次に、分析の際に必要な視点として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」があり、アプローチ方法として「グラフ」「数字」「数式」があります。 さらに、比較の前提となる"複数"と"網羅性"を担保するためにフレームワークを利用することが有効です。 長期的な目標設定の方法は? 以上を踏まえ、データ分析をハイサイクルで繰り返すことで、客観性と納得性が高い本質的な課題解決や新しい目標設定が可能となることが分かりました。 また、GAiLを通して「ありたい姿(現時点での目指す方向)」をあらためて描くことで、自分の目標が職場だけでなく、公私に共通するものであると気づきました。ありたい姿を実現するには、「ゴールを設定する」「やることとやらないことを決める」「整合を取る」ところでデータ分析を活用したいと思います。そして、公私において必要となるコンセプチュアル・スキルとヒューマン・スキルの一つであるコーチング力に注力し、ビジネス・フレームワークを身に付けていくことで、中期事業計画の策定で高度な専門性を持つことを目指します。 即断即決の精度を上げるには? 中期事業計画の策定に向けて関係者と共に戦略を自らのものとして進めるために、ビジネスの定石・フレームワークを活かしつつ客観性と納得性を担保し、最後にはこれまで培った集合知を総動員した発想の飛躍に挑戦したいと思います。 経験と勘による即断即決が多くなっていることに気づきますが、それに頼らずビジネス・フレームワークとコンセプチュアル・スキルを用いて自ら検証することの重要性も感じています。即断即決する前に深く考える時間を持ち、その考えをメモに書き出してデータ分析をもとに検証する習慣をつけたいと思います。これからも即断即決が必要な場面はありますが、その精度を上げ、発想の飛躍ができるために、視座を高く持ち、視野を広くもって先輩や上司、仲間と共に高め合える関係を継続していきたいと考えています。

デザイン思考入門

自分も受講したい!共感ステップの実践

なぜ共感が大切? 「共感ステップ」では、単なる情報収集にとどまらず、ユーザーの課題や背景を深く理解し、求める解決策を的確に見極めることが重要であると学びました。現在取り組んでいるワークショップ形式の研修デザインにおいても、受講者の視点に立ち、彼らが何を感じ、何を求めているのかを探るプロセスに重点を置く必要があると考えます。例えば、研修設計の段階で自ら受講者となって演習を体験し、ショートケースの妥当性や適切な所要時間を確認すること、また事前アンケートにより受講の狙いや期待を把握することで、表面的なニーズだけでなく本質的な課題も見極めることができると実感しました。 どう適用する? 共感ステップについて、具体的な研修デザインへの適用方法をよく考えられている点は非常に印象的です。より多くの受講者の視点やニーズを探るアプローチを試みることで、さらに多面的な理解が得られると感じます。 どの調査が有効? また、受講者の背景や課題を深く理解するために、どのような追加の調査手法が有効か、そしてワークショップデザインで共感をさらに深めるためにどのような方法を試すべきかを考えることも有意義だと思います。 どう設計すべき? 事前アンケートの実施や自身での演習を通じて、以下の点が重要であると改めて認識しました。まず、受講者のペルソナに応じた研修の難易度設定とシナリオ作成です。受講者の職種、経験年数、課題意識を踏まえ、適切なレベル感で研修を設計し、理解しやすいストーリー展開を意識することが求められます。次に、説明資料の粒度と所要時間のバランス調整が重要です。受講者の集中力や理解度を考慮し、必要な情報を適切なボリュームで提供するとともに、講義とワークの時間配分を最適化する工夫が必要です。さらに、ワークの難易度設定と題材設計については、受講者が主体的に考え、実践的なスキルを習得できるよう、初心者でも取り組みやすく、発展的な応用が可能な内容を用意することが大切です。 どう改善する? 今後も、受講者の視点に立ち、実際の学びにつながる研修デザインを追求していきたいと考えています。今週は、共感ステップの実践を通じて、ユーザー理解の深め方について学びました。現場に足を運び、ユーザーの行動や発言を客観的に捉える「現場観察」と、自らが取り組む中で感じる感情や視点を体験する「参与観察」との違いが印象に残り、これらの手法を組み合わせることで、ユーザーの潜在的なニーズや課題の本質を見極めるための深い分析が可能になると感じました。今後は、実践の場を通じて共感ステップをより意識的に活用し、受講者視点の学びを深めながら、研修デザインやサービスの改善につなげていきたいと思います。

戦略思考入門

経済性の本質を深堀りして学ぶ方法

ビジネス法則の理解を深めよう ビジネスの法則を正しく理解し、それを武器にすることは重要だと感じました。「規模の経済」はよく用いられる法則のひとつですが、大量に生産や発注をすれば、一つ当たりのコストが下がるという単純な理解しかしていませんでした。どんな場合でも規模の経済が適用できるわけではなく、固定費と変動費に分解したり、時点を広げて考えたりすることが大切だと学びました。 経済性の種類に注目する 事業経済性とは、何かをするほどコストが下がることを指します。規模の経済、経験効果、範囲の経済、ネットワークの経済、連結の経済などがあります。差別化を理想としていますが、すべての領域でそれを実現するのは難しいため、経済性にも注目する必要があると感じました。この点で、経済性といえば規模の経済とほぼ同義と考えてしまっていましたが、さまざまな経済性に着目することで思考の幅を広げていきたいと思います。 範囲の経済性を活かす方法は? 範囲の経済性については、すでに持っている資源を他の事業や領域でも活用し、コスト削減を図ることが大切です。 習熟効果においては、ナレッジの蓄積や学習に熱心な組織は習熟効果が高いことが分かりました。市場成長期に高いシェアを獲得し、競合より早く多くの経験を積むことで、先行して習熟効果が得られます。しかし、自社ではマーケティング部門ではナレッジ蓄積の意識がまだまだ低い状態です。他企業の話を聞くと、習熟効果を意識している企業も多く、自社の改善点を見つけるきっかけになりました。 経済性と差別化のバランスとは? 経済性の追求(特に規模の経済)は差別化できない企業の逃げのアクションという印象が強かったですが、差別化は理想的なものではあるものの、すべてを実現するのは難しいと理解しました。そのため、経済性との両立が必要であると再認識しました。 特に範囲の経済については、すでに持っている資源を他の事業や領域でも活用することが重要です。例えば、組織内でのナレッジ共有や連携を強化することによって、範囲の経済メカニズムを働かせることができます。最近、事業部制を導入したところで範囲の不経済が生じていますが、商品部門との人事異動や情報連携強化により、範囲の経済が実現できています。 組織内での法則の活用法は? チーム内に法則を用いて説明する機会がよくありますが、改めて本質を調べてから活用し、自分に都合よく説明しないように気をつけます。 また、来週の議論に向けて、範囲の経済について深く考え、自チームのみならず部門全体にとってのメリットを追求していきたいです。習熟効果についても他企業のナレッジ蓄積や学習の情報収集を行い、あるべき姿を考えていきます。

リーダーシップ・キャリアビジョン入門

リーダーシップで成長する秘訣とは

計画チェックと柔軟対応は? 計画の実行段階では、プロセスが予定どおり進んでいるか、また期待された結果が出ているかを定期的にチェックし、問題がない場合は状況を維持します。しかし、状況が変化した場合には、リーダーとして適切に介入が必要です。過度の干渉は避けるべきですが、状況に応じて柔軟な対応が求められます。 不測の事態への対処法は? 不測の事態が発生した場合、リーダーは結果に対する責任を負うことになります。まずは事態を収拾し、その後、問題の構造を把握して具体的な改善策を策定します。その際、個人を追及するようなことは避けるべきです。 成功と失敗の振り返りをどうする? 振り返りは習慣化することが重要です。失敗にばかり目を向けず、成功した点も評価します。評価基準を明確にし、メンバー自身に自己評価を言葉にしてもらいます。改善は具体的な行動計画に落とし込みます。 モチベーションを高めるには? モチベーションを高めるためには、日常の信頼が基本です。個々人の違いを理解し、適切に対応することが大切です。以下のフレームワークを活用すると効果的です。まず、X理論とY理論ではX理論が人間は怠け者であるとの考えを、Y理論では目標に向かって積極的に行動するとの考えを示しています。マズローの欲求5段階説では、生理的欲求、安全欲求、社会的欲求、承認欲求、自己実現欲求のどの段階がモチベーションの源となっているかを重視します。ハーズバーグの動機付け衛生理論では、動機付け要因と衛生要因を区別し、どちらが満たされていないかを判断します。 実務での実践方法は? 実務で特に有用なのは以下の2点です。 1. 相手のモチベーションを高めるコミュニケーション あらゆる場面で相手のモチベーションを高めるよう心がけます。メールの返事が遅い、または期待と異なる返事が来る場合でも、相手のモチベーションを高める姿勢を取ることで改善が図れるかもしれません。 2. 振り返りを行う際には、相手に考えてもらう問いかけを行います。 特にジュニアのメンバーとの振り返りでは、自分の経験談を押し付けず、相手自身がどのように感じ、今後に生かすかを考えさせるような対話を心がけます。自分自身の振り返りでも、昨年の経験を生かし、タイムラインの設定に注意を払って計画を立てることが有効です。 相手のモチベーションを高める際には、共感や理解を示し、良いと思った点を積極的にフィードバックします。自身のモチベーションを保つためには、自分がチームや会社に貢献できているかを意識し、その価値を自分で認めることが大切です。また、プロジェクトを継続的に見直しながら改善し、より具体的な行動計画に結びつけることが求められます。

データ・アナリティクス入門

実践で磨くA/Bテスト活用術

フレームワークの使い方は? 今週の講義は、具体的なフレームワークや分析手法を紹介するものではなかったものの、複数の視点を取り入れて考察する過程が印象的でした。仮説の立案や必要なデータの検討にあたってフレームワークを用いた結果、回答がしやすく感じられ、今後も折に触れて活用していきたいと思います。 データ活用はどう? また、ある指導者の思考方法に沿って考えることで、データ活用の体系的な流れが見えてきました。A/Bテストについては、アンケート作成のしやすさやデータ収集の容易さから非常に便利なツールだと感じました。先週のホテル宿泊客向けの設問、たとえば「食事か部屋か」という内容は、A/Bテストに最適な例だと思います。以前に似た分析を行った経験もあり、体系的に学んだことで活用の幅が広がったと実感しました。調査対象以外の条件を統一するという基本的な考え方も、以前学んだ内容を思い出させるもので、理解しやすかったです。さらに、同じ環境や条件下でランダム化を行うことで、精度の高いデータが得られる点にはしっかりと納得できました。 PDCAで進める秘訣は? A/Bテストは実施が簡単で、所定の時間内に複数回行えるため、PDCAサイクルを迅速に回しながら正解に近づける点が魅力的です。日常生活や業務での応用については現段階では明確ではありませんが、来月から本格的に業務が始まれば、積極的に活用していきたいと考えています。日常への適用はやや難しいと感じるものの、A/Bテストに類する試みが可能であれば、試してみたいと思います。また、今週はストーリー形式で原因追及を行う講義であったため、新しい手法としてのA/Bテストを講義内容に当てはめるのは少し難しく感じましたが、今後も機会があればどんどん利用していきたいです。 小さな失敗の学びは? 次回の業務では、ぜひA/Bテストを活用してみたいと思います。ある書籍で、成功の本質は致命的でない小さな失敗を積み重ね、そこから成功のカギを見出すことだと学んだこともあり、PDCAサイクルをより迅速に回すために、この手法を取り入れていくつもりです。今週の講義内容については、統計の視点からも改めて振り返り、深く学んでみたいと考えています。先週と今週のマーケティングに関連する講義や、過去に読んだ書籍を踏まえると、再び深く学んでみたい部分もありますが、やるべきことが増えているため、優先順位をつけながら学習していくつもりです。 AIに見抜かれた理由は? なお、Q1の回答で少し手を抜いたところ、すぐにAIに気付かれてしまい、驚きました。来週は引越しのためバタバタしそうですが、グループワークの課題がなかったのはありがたかったです。

データ・アナリティクス入門

正しい思考で磨く自分の軌跡

正しい思考は何? 沢山のフレームワークが出てきましたが、本質は正しい考え方や思考方法を知り、学び、定着させることだと感じました。習得するためには継続的な取り組みが必要で、これまでノートにまとめたメモを見返しつつ、改めてここに整理してみました。 仮説をどう作る? 【仮説の構築】 まず、問題を明確にする(What)、問題箇所を特定する(Where)、原因を追求する(Why)、そして解決策を立てる(How)のプロセスを大切にしています。仮説を立てる際には、複数の可能性を網羅し、一つに決め打ちしないことを意識しています。 また、取り巻く環境を3C(Customer:市場や顧客、Competitor:競合、Company:自社)の視点で考え、自社の状況は4P(Product:製品、Price:価格、Place:場所、Promotion:販促手法)で検討することで、より具体的な分析が可能になります。 情報の取り方は? 【データ収集】 既存のデータや一般に公開されている情報、パートナーの所持するデータを確認することから始め、さらにアンケートやインタビューなどで新たに情報を集める取り組みを行っています。誰に、どのように情報を収集するか、また比較できるデータを忘れずに取る点が重要だと意識しています。 どう考えを広げる? 【仮説思考】 仮説とは、ある論点に対する一時的な答えです。結論や問題解決のための仮説を、知識を広げ多角的な視点から検討することで、説得力と行動の精度を高めることができます。思考実験や「なぜ?」を繰り返すなど、ロジックツリーを活用しながら多様な仮説を生み出し、常に発想を広げる努力が求められます。 仮説はどう検証? 【仮説の検証】 仮説と検証はセットで考え、投資額や巻き込む人数、不確実性といった観点から必要な検証レベルを見極めます。初期段階で枠組みを設定し、定量・定性のデータを収集・分析することで、より客観性のある仮説の肉付けや再構築を行うようにしています。 市場をどう見る? 【マーケティング・ミックスとその他の分析手法】 製品戦略、価格、流通、プロモーションのそれぞれの側面を4Pで検証することに加え、5Aカスタマージャーニーを活用して現代の顧客行動を捉えています。また、クロス集計分析を通して、全体の傾向や特徴、特異点を把握し、次の打ち手を考えるための洞察を得ることも重視しています。 実行にどう生かす? 最終的には、これらのフレームワークや手法を日常的に活用することで、検証マインドを鍛え、チーム全体に浸透させる意識を持つことが、戦略の立案や実行に大きく寄与すると実感しました。

データ・アナリティクス入門

再発見!数字が語る学びのヒント

講義内容は何を学んだ? 必須部分の講義を受ける中で、これまで一部しか活用できていなかった知識に改めて気づくことができました。グループワークの準備で実践した際にも、新たに把握すべき点があるように感じました。 関連動画はどう見る? 関連動画が充実しているため、改めて視聴して理解を深めたいと思います。 代表値の多様性は? 代表値については、単純平均だけでなく、加重平均や幾何平均、中央値が存在することを学びました。また、全体感を把握するための円グラフや、構成要素の割合とばらつきを見るヒストグラム(標準偏差を用いる)の活用も理解できました。 散布図の意義は? 散布図は、2つの変数の関係性を探るグラフとして有効であると実感しました。相関関係と因果関係は切り離して考える必要があり、関係性は相関係数など数式で表現できる点も印象的でした。 度数分析のコツは? 度数分析では、ヒストグラムを用いて集団の特性を把握する方法について学びました。正規分布だけでなく、必ずしも正規にならないケースや、階級幅の取り方(スタージュの公式など)にも触れることができました。 時系列の変化は? 時系列分析では、過去のデータから将来の予測を試みる手法として、横軸に時間、縦軸にデータをとることでトレンドの変化や予測外の出来事の影響を確認する方法を学びました。傾向変動、循環変動、季節変動、不規則変動に注目し、直近と長期のデータ双方に着目する重要性も理解しました。 パレート効果は何か? パレート分析では、20/80や30/70の法則を棒グラフと累積量を示す折れ線グラフで確認する方法を学び、場合によっては10/90となることもあると知りました。 ウォーターフォールは? ウォーターフォールチャートについては、複数の構成要素を階段状に表現し、正負の要素を分けて時系列での変化を詳細に読み取る手法が紹介されました。ただし、場合によっては円グラフや棒グラフの方がシンプルで分かりやすいこともあるため、状況に応じた使い分けが大切だと感じました。 知識活用の方法は? 今後は、単純平均だけに頼らず、円グラフやヒストグラム以外の表現方法も意識して活用していくとともに、学んだ知識を実務に取り入れ、部下や仲間と共有しながら継続的にアウトプットしていきたいと思います。 計算苦手を克服する? 数字や計算式に苦手意識があるため、今後は復習を重ね、参考図書を活用して学びを深めるとともに、グループワークや他の受講生の振り返りを参考にしながら、データの読み取り方を改善し、最終的には実践的な分析を通して意思決定につなげていきたいと思います。

マーケティング入門

潜在ニーズを探る秘訣と実践方法

GAiLで何を学んだ? GAiLと動画学習を通じて、多くの学びがありました。過去に実践していたこともありましたが、うまく活用できず、深く掘り下げることができていなかったため、事実をつかみ切れていないことに気づきました。 顧客ニーズはどう捉える? 顧客のニーズを深堀し、真のニーズを捉えることは重要ですが難しいと感じています。顧客自身が欲求に気づいていないため、単純な質問では引き出せないのです。しかし、真のニーズを探り出す手法について学ぶことで、その意図をよく理解できました。 行動観察の効果は? まず、エスノグラフィー(行動観察調査)は、消費者の潜在ニーズや課題を発見するために有効であり、言葉以外の情報が主な分析対象であることが分かりました。そして、デプスインタビューでは、報酬の影響で真のニーズが引き出しにくくなる点を知り、これを避けるためにラポール形成が有効だと理解しました。 ウォンツ追求に落とし穴は? 真のニーズをつかめないままウォンツを追求すると、価格競争に巻き込まれたり、的外れな商品開発に繋がる恐れがあります。アンケートや顧客購買データの分析、インタビューだけでは真のニーズを捉えきれないと、改めて認識しました。 経験から何を学ぶ? 特に、サービスを提供する立場として、顧客のウォンツに過度にフォーカスしていたことに気づきました。過去の業務改革プロジェクトでも、潜在ニーズの抽出が不十分だったことを反省しています。今後は、深堀りできる質問を通して真のニーズに到達することを目指します。 手法をどう実践する? さらに、実務の流れを理解し、エスノグラフィーをより効果的に活用したいと思います。ウォンツの裏にある潜在ニーズや課題を発見するため、これまで学んだ手法をどんどん活用することで、より良いサービスの提供や提案を可能にするつもりです。 新たな挑戦は何? まずは手法に慣れることから始め、さまざまな場面で活用できるように努めます。具体的には、以下の点に取り組んでいきます: 1. 身近な商品やサービスについて、真のニーズを想像し実践に活用する。 2. 社内提案時に顧客(上司)の真のニーズを捉えるため、エスノグラフィーを導入し実践する。 3. 状況に応じて質問リストを準備し、相手の返答を具体的にイメージして備える。 4. 顧客先ではラポール形成をして顧客ニーズを探り、具体的な質問で深堀する。 成功と失敗の振り返りは? これらの取り組みを通じて、成功と失敗の経験を纏め、成功した点は今後も継続し、問題点は振り返り次回に向けて改善します。

「活用 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right