データ・アナリティクス入門

データが語る、私の成長ストーリー

現状はどう伝える? 私の目的は、日々KPIを達成できる体制を構築することにあります。そのため、どのように現状を正確に伝えるかが極めて重要であり、皆に心からの気づきを与え、具体的な行動を促すことで、この目的に近づけると考えています。 状況把握の秘訣は? 毎週、先週の状況を報告し、改善された点と引き続き課題である点を会議の場で共有しています。また、状況分析は、先々週との比較だけでなく、前年同時期との比較など、さまざまな視点を取り入れて工夫を重ねるよう努めています。 解決策の効果は? 課題に対する解決行動としては、実際に取り組んでいる組織へのインタビューを実施し、取り組みの効果を定量的に分析することで、対策を行った場合と行わなかった場合の効果の違いを明確にしています。加えて、どのようなデータの見せ方が皆の意識に響くのかを考え、情報の提示方法にも工夫を凝らしています。

戦略思考入門

営業の視点で磨く判断力

営業視点はどう捉える? 今回の問題は、営業の立場からの視点で出題されており、考え方が非常に難しいと感じました。解説を読むことで、普段あまり考慮しない視点にも目を向ける必要があるのだと実感しました。 複数データの優先はどうする? また、複数のデータから何を優先すべきかを考えながら選択することの難しさを痛感しました。短期的な利益だけを追求するのではなく、現状の情報や将来のメリット・デメリットを十分に把握しながら判断する必要性を感じました。 プロジェクト整理はどうする? さらに、現在私がマネジメントしている複数のプロジェクトのうち、どれを継続しどれを破棄すべきかという選択の場面で、この考え方が非常に役立つと感じました。トレードオフが存在する中で、各プロジェクトの現状把握や、組織全体としてのメリット・デメリットの分析から、優先すべき点を明確にすることが求められます。

データ・アナリティクス入門

集めて比べる、学びの第一歩

ライブ授業をどう捉える? ライブ授業を通して、分析においては「比較」が非常に重要であると改めて実感しました。限られた情報の中で考察を進めると、様々な視点が生まれる一方で、正確な回答を導き出せない場合もあることが認識できました。 データ準備の確認は? データ分析を実施する際には、まず必要なデータをしっかりと揃えることが不可欠だと学びました。新しいシステムの導入を検討する場合、価格、使用頻度、使用者の経歴、最も利用される時間帯など、複数のデータを準備し、事前に確認すべきポイントを絞り込む必要があります。 集計と比較はどうする? その上で、まずは確実にデータを集め、その後に集めたデータを比較しながら、必要な情報や懸念点を検討していくことが大切です。さらに、足りない情報がないかを意識しながら、新しいシステムに求められる要素を見極めるプロセスの重要性を再認識しました。

クリティカルシンキング入門

問いが拓く企業分析の新視点

どんな問いが必要? 何かミッションが提示された際、その本質的な課題を明らかにするために、まず問いを設定し、その問いをさらに細かい項目に分ける方法が用意です。また、問いに対する答えを検討する際、引用するデータの見せ方―たとえば円グラフや棒グラフを用いるか―によって、受け手に与える印象が大きく変わることが理解できました。 どの視点で整理すべき? 私は勤務先で、関係企業ごとに企業概要、主要プロジェクト、財務諸表、決算書類などをまとめた資料の作成に取り組んでいます。今回の学びを応用し、各企業が展開するプロジェクトをどの切り口で記述するかを検討しています。具体的には、この資料が誰にどのように活用されるかを踏まえ、より多くの人にとって見やすい企業分析資料にするために、プロジェクトの実施地域や事業内容など、さまざまな切り口から情報を整理することにつなげたいと考えています。

戦略思考入門

業界データと周辺情報で見つける成功戦略術

規制産業のデータ推測方法は? 業界データから個別企業の売上や利益を推測することを学びました。タクシー会社のような規制産業では特に、実務で手に入らない情報を周辺データから類推する習慣をつけていきたいと考えています。 手術機器市場の分析方法は? 私は、手術機器の医療機器メーカーのマーケティングを担当していますが、クリニックで手術が行われているかどうかの統計データがなく、これまであまり分析をしていませんでした。今回の演習を通じて、他のデータから類推できる方法を検討してみたいと思います。 2025年戦略の成功要因は? 2025年のマーケティング戦略立案時には、自社のビジネスの特性や業界の特性を理解し、フレームワークを活用して戦略を立てたいと考えています。その際、表面的な分析に留まらず、本質を捉えた分析を行い、社内のメンバーを巻き込みながら方向性をまとめたいです。

データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

クリティカルシンキング入門

整理で見つける新しい視点

情報整理の目的は? 情報整理の基本として、まずは「何のために整理するのか」という目的をはっきりさせ、その上で情報を細分化し、必要に応じて加工することの大切さを学びました。その後、細かく分けたデータをグルーピングし、要約する「So What」や根拠を示す「Why So」により、情報の意義や本質を明確にするプロセスに取り組みました。さらに、全体を漏れなくかつ重複なく整理するMECEの考え方もポイントとして意識しています。 イシューの見極めは? 業務においては、イシューを的確に特定し、チーム内で共通認識を持つことが不可欠であると実感しています。また、データを加工して細分化することが、より精度の高い分析につながるため、日々の業務で実践しています。この学びは、コンサルティングの現場で求められるクリティカルシンキング力の向上にも大いに寄与すると考えています。

データ・アナリティクス入門

数字が語る学びの軌跡

なぜ統計手法を重視? 平均値だけでは数値のばらつきを捉えきれないと実感しました。仮説を立てる際、標準偏差や中央値など多様な統計手法を併用することが大切だと改めて感じます。また、データをビジュアル化することで仮説の精度が向上し、分析のアプローチ自体も変わり得る点が印象的でした。 どう評価を改善? 今回のコンテンツ運用アンケートでは、これまで尖った意見や単一の数値に頼った評価に偏っていた部分を改善するヒントを得ました。今後は、仮説を明確に立てた上で、比較や傾向を意識した深いデータ分析を心がけていきたいと思います。 整理で何が見える? さらに、既に収集しているアンケートデータの整理を実施し、情報の過不足を確認する予定です。初めてのデータビジュアル化にも挑戦し、その結果は次回以降の運用改善のための知見として、適切な知識管理ツールで整理していきます。

アカウンティング入門

原価率から学ぶカフェ経営の知恵

価格と原価の関係はどうなってる? 原材料が高価でなくとも、販売価格が低い場合、原価率が高くなる可能性があることを学びました。特に、アキコのカフェではこのことが当てはまりました。また、限られた情報の中で損益計算書やバランスシートを使い、企業の経営状態を読み解くのは難しいと感じました。 経営戦略の理解はどう進む? 時間がある時には、同業他社や他業種の損益計算書、バランスシート、IR情報を調べ、その経営戦略を理解することを心がけています。他社から得た知識を、自社や自分の業務に活用することで、仕事の質を向上させることが目的です。 同規模企業と何が違う? また、財務諸表を分析する際は、まず業界トップの企業を確認し、その後、自社や同規模の企業と比較して違いを探ります。そして、その中から参考にできそうな経営戦略を自身の業務や部署に活かす方法を検討しています。

データ・アナリティクス入門

平均の裏側が見える瞬間

平均計算の選び方は? これまで「平均」といえば、すべてを足して割る単純平均を想像していました。しかし、データの重要度が異なる場合には加重平均、成長率や比率を扱う際には幾何平均を使うなど、状況に応じた適切な平均値の選択が必要であると知り、目から鱗が落ちる思いでした。 散らばりの重要性は? また、データの中心を示す代表値だけでなく、その中心からどれくらい離れているかを示す散らばり(標準偏差)の重要性も学びました。これにより、数値情報をより深く理解する視点が広がりました。 広告指標の活用は? さらに、web広告の運用効率などをより詳細に分析し、目的に応じた指標を活用してデータから正確な情報を読み取るスキルを伸ばしていきたいと考えています。まずは、分散などの指標を視覚化してみることで、思わぬ面白い発見が得られるのではないかと期待しています。

データ・アナリティクス入門

何から手をつける?4STEPで解決

何から手をつける? たくさんの問題に直面した場合、何から手をつけるべきか悩むことがよくあります。そのような状況で、今回学習した「問題解決のステップ」がとても印象に残りました。具体的には、「what」で直面している課題や状況を明確にし、「where」で問題の個所を絞り込み、「why」で原因をしっかり分析し、最後に「how」で原因に応じた有効な解決策を考えるという流れです。 どう整理して進む? このステップを活用することで、目についた情報に振り回されて時間がかかってしまったり、都合の良い情報ばかりを集めて「決め打ち」に陥ったりするリスクを回避できると感じました。今後、問題に直面したときは、まず「what」で問題の本質を把握し、次に「where」「why」「how」の順で整理していくことで、よりロジカルに問題解決に取り組んでいきたいと思います。

データ・アナリティクス入門

データで切り拓く学びへの一歩

ライブ授業で何を得た? ライブ授業に参加して、データ分析の必要性を改めて認識しました。普段はデータを扱う機会が少ないのですが、分析を日常的に行っている方々から手法を学ぶことで、非常に参考になりました。また、ある設問を通じて、固定観念にとらわれず情報から直接課題を読み解く重要性を実感することができました。 困難にどう対応する? 問題や困難な状況に直面した際は、データをしっかりと集め、論理的に順序立てて分析する手法が重要であると学びました。これまで名刺の発注から納品までの流れは大まかにしか把握できていなかったのですが、今後は過去の発注履歴に発注日を記録し、統計的に納品までの期間を明らかにしていく予定です。全体の名刺作成フローを見直し、どこにボトルネックがあるのかを把握した上で、その原因となる要因を具体的なデータをもとに分析していきたいと感じています。
AIコーチング導線バナー

「分析 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right