マーケティング入門

現場で磨く!顧客視点の極意

体験で何が学べた? 自らが同じ環境に身を置くことで、真のニーズを引き出すという学びがありました。その経験から、自分が自然に心掛けていた考え方が正しいと再確認できた一方、ペインをゲインに変える視点が欠けていたことに気づかされました。 何に注力すべき? 顧客のニーズを把握するため、カスタマージャーニーを丁寧に実施し、これまで見落としていたペインポイントを洗い出すことの重要性を感じています。その上で、見つけたゲインポイントに基づいて、今後どの方向に力を注ぐべきかを提言していきたいと思います。 どのデータが鍵? また、マーケティングでは裏付けとなる指標やデータを収集し、分析を行うことが不可欠です。これらの情報をどのように効果的に収集しているのか、その方法と手法についてさらに学んでいきたいと考えています。

クリティカルシンキング入門

複数視点で見つける意外性

複数視点で何を学んだ? 博物館の来場者数の分析では、単一の切り口だけでなく複数の視点から見ることで、これまで気づかなかった情報が浮かび上がる様子に強く印象づけられました。ひとつの分析に頼ると誤った結論に導かれる恐れがあるため、複数の視点からの仮説を立て、しっかりと検証する重要性を改めて実感しました。 アンケートはどう分析する? また、アンケート結果をまとめる際にも、今回学んだ複数の切り口での分析方法が生かせると感じました。従来は年代、性別、部署、役職など、一つのカテゴリーに絞って分析しがちでしたが、複数の視点から見ることで今まで気づかなかった傾向を見出せる可能性があります。今後は、仮説を立てながらどのような角度で分析を進めるのが最適かを考えつつ、アンケート結果のまとめに取り組んでいきたいと思います。

データ・アナリティクス入門

実務に効くプロセス分解の秘訣

どこで分割すべき? 今週はプロセスに分けて分析する方法を学びました。Web解析の基本知識があるため、内容は理解しやすかったです。特に、Web以外の分野でプロセスに分解して分析する場合、どの段階で分割するかが非常に重要だと感じました。効果的でないプロセス分割をしてしまうと、いかに情報を分析しても課題解決に結びつく情報提供ができなくなるため、プロセスの分離設計が不可欠だと実感しました。 A/Bテストはどう? また、A/Bテストについては実施が必要だとは思いつつも、実務ではリソース不足などの理由で2パターンの検証が難しいケースが多いと感じています。そのため、実務ベースでは別の手法を模索する必要があると考えます。勉強のために、実際に行われたA/Bテストの具体的な事例があれば、ぜひ共有いただきたいです。

データ・アナリティクス入門

AIコーチングで広がるグループ学び

グループの雰囲気はどう感じた? 初回は緊張しましたが、グループワークでは話しやすい雰囲気で進行できたため、大変助かりました。また、AIコーチングによる問いかけが非常に面白く、考えるきっかけとなりました。 研修効果は本当に測れた? 研修効果の測定に向けては、既存の受講アンケートで収集した定性・定量データを十分に活用できていないと感じています。今後は、受講者の満足度アンケートや受講前後の評価、テストスコアの推移を分析し、研修プログラムが成果につながっているのかを検証していきたいと考えています。 業界のデータはどう活かす? さらに、各業界におけるデータの利活用方法や、これからの取り組み動向についても知りたいと思っています。その情報を基に、自社や業務への取り入れ方を検討する参考にしたいです。

クリティカルシンキング入門

視点が変わる!課題見える化の極意

なぜ課題は視覚化すべき? 課題を明確にすることが、適切な対策を打つ上で不可欠だと学びました。講座では、ミーシーに分解しグラフなどで視覚化することで、課題をより具体的かつ明瞭に把握できる点が印象的でした。 多様な視点は必要? また、自分自身の視点だけでなく、他者の意見や視点を取り入れることが、課題の本質を捉える上で重要であると実感しています。これにより、データ分析での課題抽出にも効果的な手法であると考えています。 どうやって相手に響かせ? さらに、報告や資料作成の際には、相手が何を求めているのかを意識し、視点を柔軟に切り替える必要があると気付かされました。見せる場所や強調すべき点を明確にすることで、資料を閲覧する方の注意が散漫にならず、伝えたい情報がしっかりと伝わるよう努めています。

戦略思考入門

中期計画に挑む!フレームワーク活用術

情報の壁はどこに? フレームワークを活用する際、自分が持つ情報に限界があることは明白です。たとえば、3C分析、バリューチェーン、SWOT分析のいずれの場合も、市場や競合の情報が不可欠であると認識しています。会社全体の戦略を検討する時は広範な情報が必要になりますが、部門単位で戦略を考える場合は、対象となる競合の範囲が限定されるため、まずは部門に絞って分析を進めたいと考えています。 計画精度をどう上げる? 現在、中期事業計画を作成中です。このフレームワークを用いて、定型的な分析を実施し、その結果を経営層に確認してもらうことで、計画の精度を高めたいと思っています。また、すべてのフレームワークを活用するには時間と労力がかかるため、実施するフレームワークを絞って効率的に分析を進める方針です。

データ・アナリティクス入門

仮説が切り拓く多彩な世界

どう仮説を活かす? 仮説を立てることで、物事に対して多角的なアプローチが可能になります。偏った考えに陥らず、さまざまな観点から状況を把握することにより、自分自身の理解を深めるとともに、他者を説得するための材料としても活用できるメリットがあります。例えば、「こうだったら、こうではないか?」や「その逆はどうか?」といった問いかけを行うことで、あらゆる角度から物事を捉える習慣を身につけることができます。 ビッグデータ検証は? ビッグデータを扱う際には、仮説の重要性が特に高まります。決めつけることなく、あらゆる可能性を念頭に置いて分析することで、物事の本質に迫ることができるのです。また、このアプローチは、他者への提案や情報の共有にも役立ち、柔軟な発想を促す大切な手法と言えるでしょう.

データ・アナリティクス入門

問題を分解して実践に活かす学び

原因はどう分析する? 問題の原因を探る際、原因をプロセスごとに分解しアプローチする重要性を学びました。解決策には100%の正解は存在しないため、複数の選択肢を洗い出し、それぞれの根拠を明確にしたうえで絞り込むことが求められます。これまで自分の中で明文化して説明することができず、今回の学びでしっかりと腹落ちする成果が得られました。 WEBマーケはどう活かす? また、対顧客のWEBマーケティングに直接関わっていなくとも、営業支援の業務を通じて情報発信と習熟度の向上に努めています。今回習得したA, Bテストの知識を業務に活かし、営業担当者がサービスや商品をより理解しやすい環境を整えることで、実際の活動に繋がるかどうかを、分析と施策のトライアルを通じて検証していきたいと考えています。

戦略思考入門

実践に生きる学びのヒント

実践活用の方法は? 今週は講義全体の振り返りを行いました。学んだ知識を自分に落とし込むためには、実際に活用するしかないと感じています。明確なゴールに向かう道のりを描くため、フレームワークを用いた多角的な分析が有効だと実感しました。一部の情報だけに頼った分析では、効果的な戦略を描くことは難しいため、バランスの取れた視点が大切だと考えています。今後は業務の中でこれらの学びを実践し、定着を図っていきたいと思います。 戦略はどう考える? また、自分が担当する課の方向性や今後の戦略を検討する際に、講義の内容が大いに役立つと感じています。他者との差別化を維持しながら持続可能な戦略を立てるために、今後も変化する環境に柔軟に対応しつつ、長期的な視点を持って取り組んでいきたいと考えています。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

データ・アナリティクス入門

データに隠れた学びの宝石

代表値の役割は? 今回の学習では、数字と数式における代表値とばらつきの概念を学びました。代表値では、平均値、加重平均値、幾何平均値、中央値、最頻値という各種の指標の使い分けを学ぶとともに、平均値の弱点についても理解を深めました。 ばらつきの意味は? また、ばらつきを示す指標として、分散と標準偏差があることを学びました。これらの指標を使うことで、単に中心傾向を示すだけでなく、データ全体の分布やばらつきの様子を具体的に把握できるようになりました。 実践でどう活用? 今後は、日常的なデータ分析において、平均値だけでなく、加重平均値や中央値などの代表値を適切に使い分け、さらに必要に応じて分散や標準偏差も活用することで、より豊かな情報の抽出を目指していきたいと思います。

クリティカルシンキング入門

見落とさない!分解思考のすすめ

分解のメリットは? 数字の分析において、まず各要素に分解することが非常に効果的であると学びました。たとえ特定の切り口が顕著な兆候を示していても、他の視点から検証し、見落としがないか批判的に見直すことが大切だという点が印象に残りました。 MECEって何だろ? また、分解を行う際には、まずその切り口全体の定義を明確にすることで、情報が重複せず抜け漏れなく整理される(MECEの考え方)というコツも習得しました。これを踏まえ、会社内での人材や各種KPIなど複数の視点から実践していく予定です。 サーベイの分析はどう? 特に、先日実施された全社のエンゲージメントサーベイを改めて分解し、分析することで、さまざまな事象の要因をより明確に見定められるのではないかと考えています。

「分析 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right