データ・アナリティクス入門

数字に秘めた改善の真実

平均と中央値はどう違う? 平均は全体の傾向を示す便利な指標ですが、外れ値の影響を受けやすいため、必ずしもデータの中心を正確に表しているわけではないと再認識しました。一方、中央値はデータを並べたときの中央の値であり、外れ値の影響が少ないため、偏りのあるデータに対して有効だと感じています。また、標準偏差を活用することで、同じ平均値でもデータのばらつきに違いがあることを明確に把握できる点が印象に残りました。 営業改善、ポイントは? 営業店の業務改善においても、代表値を活用する意義を学びました。具体的には、各店舗の業務処理時間を平均と中央値で比較し、処理時間が極端に長い業務がないかを確認することで、改善策の提案につなげる方法が効果的です。さらに、各営業店ごとの業務プロセスのばらつきを標準偏差で表現し、オペレーションの違いを把握する取り組みが有用であると考えています。 業務負荷の見極めは? また、ヒストグラムなどを用いて業務負荷の高い部分を特定し、改善の優先順位を決める手法にも触れ、業務効率化の進捗をグラフでフィードバックすることで、改善効果を視覚的に伝える方法の重要性も実感しました。

アカウンティング入門

B/Sが映す企業価値の謎

B/Sの数字は何を示す? ビジネスモデルや企業が提供する価値が、貸借対照表(B/S)に現れる数字に大きく影響する点に大変興味を持ちました。これまで苦手だったB/Sを読み解く作業も、今回の講義を通じて新たな面白さを感じることができました。 講義で何が変わった? 講義では、自分にとってイメージしにくかった業界のB/Sも、「提供価値」という視点から考えることで、よりわかりやすく読み解けるという学びがありました。特に、ある企業が震災を受け現金保有率を高めた事例は、B/Sが企業の健康状態を表すという考え方を改めて実感させてくれました。 異業種比較の真意は? また、これまで自社や同業他社のB/Sを比較していた自分にとって、ビジネスモデルが異なる他業界との比較も自社への新たなヒントになるのではないかと感じました。まず、自社の顧客に対する提供価値を改めて考え、その視点からB/Sを見直すこと。そして、次に同業他社の提供価値も再検証しB/Sを読み解いた上で、さらに他業界のB/Sにも目を向け、各ビジネスモデルとB/Sとの関係性を比較するという流れが、今後の経営判断に役立つと実感しました。

アカウンティング入門

問いが導く業界と成長へのヒント

業界理解は十分ですか? 一見理解しやすいと思われがちな業界であっても、その特性を十分に理解しなければ、売上や費用の数字を正しく読み解くことは難しいと実感しました。各業界の事業特性を踏まえることが、財務諸表の分析能力を向上させる鍵であると感じています。 問いで成長できるでしょうか? また、学習方法として「問いを受け、考える瞬間こそが成長の起点である」という点に気づかされ、今後の学びに大きな影響を与えていると感じました。 比較分析の基本は何でしょう? 基礎面では、自身の業界や関連業種間での企業比較分析を日々の業務に活かすことで、アカウンティングの基本的な活用方法を確立していきたいと思います。 経済全体の見方はできていますか? さらに、ビジネスマンとして様々な業種を対象に、社会経済全体の動向を理解する視点を広げる必要性を強く感じました。そのためには、各業界の事業特性や直面している社会課題を正しく把握することが不可欠です。今後は、継続して学習プログラムを受講することや、新聞などの資材を利用して社会経済全般の知見を深める取り組みを進めていきたいと考えています。

戦略思考入門

学びの武器で戦略に挑む

戦略を見直す動機は? 4つの基本的なフレームワークを通じて、戦略的思考の基盤を学ぶ機会を得ました。これらのフレームワークは、各自が気付かずに行っている思考の一部を整理し、分析の抜け漏れを防ぐ点で大変有用だと感じています。複数の視点で同じフレームワークを活用することで、多角的に物事を捉えられるメリットも実感しましたが、一方で主観性や抜け漏れという課題も明確に認識する結果となりました。 サポート部門で何が起こる? サポート部門では、KPIを基に影響要因や限られた人的資源の最適配置といった課題が日々議論されています。このような現場において、学んだフレームワークを適用して分析を行うことは、より効果的なディスカッションや意思決定に繋がると考えています。 実践で何が変わる? 今後は、学んだフレームワークを実際の議論に取り入れ、戦略的な思考をさらに深める習慣を身につけたいと思います。また、ヘッドカウントのプランに重要な影響を与える新規案件については、3C、PEST、SWOTの各手法を活用することで、より多角的かつ精緻な分析が可能になると期待しています。

戦略思考入門

上司の戦略から学ぶ賢い道の選び方

上司の戦略はどう見る? WEEK1を通じて、身近にいる優秀な上司が持つ行動と戦略思考の共通点に気づくことができました。彼らは明確にゴールを設定し、二手先や三手先のリスクや相手の反応を見据えた上で初手を決めています。また、このプロセスは直線的なものだけではなく、楽な道を選び、不要な衝突を避ける最短距離を見抜く力が大切だと学びました。そして、そのために必要なことを徹底する一方で、しなくてもいいことを切り捨てる判断も重要だと実感しました。 どう部下を導く? 自身の行動にとどまらず、部下からの相談に対応することも多い中で、社内外の多様な利害関係者がいることを考慮しつつ、職場のメンバーをストレスなく適切な判断でゴールに導けるビジネスパーソンを目指したいと考えています。 未来をどう予測? 日常業務では、次の手を打った際の効果や影響について考える力はある程度備わっていると感じますが、二手先や三手先までを予測する能力はまだ不足を感じます。また、ゴールまでの進め方に関しても直線的になりがちです。そのため、戦略的な迂回策を意図的に考える力と習慣を身につけたいと思います。

データ・アナリティクス入門

仮説検証が開く未来への扉

原因究明の方法は? 問題の原因を探る場合、詳細に分けて確認しボトルネックを明確にすることで、問題の把握が容易になると感じました。 A/Bテストって有効? また、A/Bテストの概要とその活用方法について学ぶ中で、短期間で仮説の検証と効果測定が可能であること、さらに実際にある国の大統領選挙でも用いられていた実例から、有用性の高さを実感しました。 顧客接点をどう増やす? 担当顧客をセグメントに分け、各セグメントごとにデジタルを活用して顧客とコミュニケーションの機会を生み出す取り組みも印象的でした。例えば、メルマガ配信では、メールのタイトルや構成が開封率やクリック率にどう影響するかを比較する際に、A/Bテストが効果的に活用できそうだと感じました。 テスト後の活かし方は? 実際にA/Bテストを行う際は、1要素ずつ変更し、同一期間でのテスト実施により正確な効果測定ができるよう学んだ内容を参考に実践しています。実施後は、単にテストを終えるのではなく、振り返りの分析をしっかり行い、その結果を次回のテストに活かすことで、継続的な改善につなげています。

戦略思考入門

フレーム活用で広がる戦略の可能性

戦略思考はどう磨く? 戦略的に考えるためには、自己の経験や感覚に頼るだけでなく、フレームワークの活用や他者の視点を取り入れながら抜け漏れなく整理することが重要だと学びました。また、フレームワークを使ったとしてもそれだけで万能になるわけではなく、本当に大切な要素を選び抜くセンスと大胆さが求められ、実践を通して戦略的思考を磨く経験が不可欠だと感じています。 分析手法はどうする? 3CやSWOT分析の概要や方法は理解していたものの、実際の業務の場面では十分に活用できていなかったと実感しています。現在携わっている中期戦略の検討において、これらのフレームワークを積極的に取り入れてみたいと考えています。 競合とブランディングは? 特にコーポレートブランディングの領域では、これまではあまりフレームワークを用いてこなかったため、SWOT分析を通じて自社の強みや弱み、外部環境の影響を整理し、3C分析では市場・顧客および競合の状況を評価することに挑戦したいと思います。ただし、3C分析で「競合」の範囲をどの程度広く設定するかについては、引き続き検討が必要と感じています。

データ・アナリティクス入門

数字で読み解く成長ストーリー

代表値で分かる? データの状況を評価するためには、単純平均、加重平均、幾何平均といった代表値や中央値が用いられます。平均値は計算が簡単で直感的に理解しやすい一方、極端な値(外れ値)の影響を受けやすいという面があります。そのため、データのばらつきを示す標準偏差と併せて確認することが重要です。 小規模店舗見えてる? 複数の店舗の売上やイベントの各店舗での来場者数などを平均値だけで評価すると、店舗ごとの規模や条件の違いから、小規模な店舗や一時的な変化を見落とす可能性があります。こうした場合、標準偏差や中央値などの指標を追加することで、より詳細な状況把握が可能となります。 分析体制整える? レポート作成においては、平均に加え中央値、最頻値、標準偏差など複数の代表値やばらつきの指標を数値化することで、微細な変化に気づきやすい分析体制を整えることが求められます。さらに、ヒストグラムや折れ線グラフ、棒グラフなどを用いて直感的に理解できる分析を行い、Lookerstudioやスプレッドシートでテンプレートをあらかじめ用意しておくと、作業の効率化にも寄与します。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

デザイン思考入門

アイデアの花咲くコラボ術

仲間の意見はどう感じる? 他の受講生の発表を拝見し、短期間でこれほど多彩なアイデアが生まれるのかと驚くと同時に、さらに洗練されたフィードバックの重要性を実感しました。個々のセンスだけでなく、複数人でのコラボレーションやコミュニケーションが、成果物に大きな影響を与えることを改めて認識しました。 デザイン思考で何得る? また、デザイン思考は新製品やサービスの開発に留まらず、決まった答えが存在しない業務課題の解決にも効果的だと感じます。たとえば、最新の技術を既存業務に融合させるプロジェクトにおいて、ユーザーへの共感をスタートに試作とフィードバックを繰り返すプロセスは、従来の単純な試行錯誤に比べ、確実な成果を生むと確信しました。 ユーザー声、どう活かす? さらに、新しいプロジェクトを始動する際には、漠然とした計画やスケジュールだけでキックオフするのではなく、まずユーザーの声や抱える課題に全体の意識を向けることが重要だと考えています。解決すべき明確な目標をチーム全員で共有することで、各活動の一貫性を高め、より良い成果につなげていきたいと思います。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

データ・アナリティクス入門

実践で磨く仮説思考の秘訣

正しい仮説はどう作る? 仮説を正しく構築することで、検証マインドが高まり、ビジネスの精度向上につながります。そのため、適切な仮説を立てるスキルの習得が求められます。また、「what」「where」「why」「how」といった視点を意識することで、課題の把握や解決方法の糸口を見つけることが可能です。 販売分析の秘訣は? 日々の販売分析においても、仮説思考を取り入れるよう努めています。現場担当者が実務の中で肌感覚で感じている課題について、定量的・定性的な両面から評価し、チームとして合意のもとで進めることが重要です。 仮説は独立すべきか? また、仮説は一つに絞らず、対策や重要性、影響力を十分に考慮した上で、業務への反映が必要です。複数の可能性を見極めながら、最適な対策を検討していく姿勢が大切です。 改善プロセスは? 具体的なプロセスとしては、まず現場担当者が感じている課題を確認し、併せて実績数値などのデータを基に問題点を洗い出します。その上で、いくつかの仮説を立て、裏付けとなるデータや対策案を検討しながらプロセスの改善を進めています。

「影響」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right