データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

クリティカルシンキング入門

シンプルに伝える文章の力

日本語の使い方は? 相手に分かりやすく伝えようと努めていたつもりでしたが、日本語の使い方に改めて課題があると感じました。今後は、主語を一つに絞り、述語がその主語に確実に対応するよう心がけ、文章も簡潔にまとめていきたいと思います。 根拠はどう考える? また、主張を伝えるための根拠の組み立て方として、抽象的な柱から徐々に具体的な内容へと展開していくステップを学びました。しかし、伝えたい相手の立場や状況によって興味や関心は異なるため、相手の視点に立った根拠づけが非常に重要だと感じています。 学びを生かすには? このような学びは、日常のコミュニケーションや資料作成といった様々なシーンで活かせると考えています。たとえば、伝えたい内容をピラミッドストラクチャーで整理し、主語と述語を意識した簡潔な文章を心がけることで、相手に伝わりやすくなり、結果として相手の理解負担だけでなく、自分自身の伝える負担も軽減できると思います。 文章チェックは? 具体的には、メールやチャットなどの文章コミュニケーションにおいては、①主語と述語の関係が正しいか、②文章ができるだけ簡潔にまとめられているか(文が60文字以内を目安にする)、③相手の立場に立った内容になっているか、という点を常に確認していきたいです。また、資料作成の際には、ピラミッドストラクチャーを用いて思考を整理し、論理構造の妥当性をしっかりと確認することを意識します。

リーダーシップ・キャリアビジョン入門

ふたつの関心軸で変わるコミュニケーション

マネジリアルグリッドとは? マネジリアルグリッドという概念について初めて知りました。「人間への関心」と「業績への関心」の2つの軸に分けて考えると、確かに理解しやすいと思います。コミュニケーションがうまくいかないと感じるときには、この関心の軸が異なっているのかもしれないと感じました。業務中はどうしても「業績への関心」に比重が大きく傾きがちかもしれませんが、私自身は「人間への関心」に寄っていると思います。両軸とも大切にしたいと感じています。 MBOにおける環境要因とは? 次に、環境要因と適合要因の視点から、直近の目標設定(MBO)でメンバーへの支援の準備を進めたいと思います。対象者の経験や知識スキルの把握、そして組織やチームの方向性や状況を整理して、その上で主に支援型のアプローチを考えていますが、達成志向型のアクションも忘れずに取り入れていきたいです。 タレントマネジメントの活用法は? 具体的なアクションとしては、まずはタレントマネジメントを活用して対象者の情報を把握します。スキルについてはある程度把握できると思われます。また、リーダー陣の会議を通して、組織の課題や方向性を理解することが重要です。組織再編があったばかりなので、この点が特に重要です。そして、定期的な1on1の機会(現在は月1回)を利用して、対象者のバックグラウンドを知り、キャリアプランを描きつつ、明確なゴール設定を目指したいと考えています。

クリティカルシンキング入門

フラットな視点が拓く未来

データの説得力は? データに基づいて論理的に導き出された方策には、数ある手法の中でも特に説得力があり、実践する際に効果が期待できると感じました。 本質はどこにある? チームで分析を進める際、議論が拡散して本来の問いを見失わないよう、得られた事実に対して丁寧に目を向けることが重要だと実感しました。実際の業務では、頭の中にある既定の原因や方策にとらわれず、フラットな姿勢でデータと向き合う意識を持つ必要があると感じています。 仮説の進め方は? また、全ての要素を網羅的に分析し、一つひとつ順番に確認する方法は非効率であるため、仮説を立てた上で優先順位を意識しながら進める手法の重要性を改めて認識しました。 満足度の裏側は? 年に一度、事務局を務める競技会の満足度アンケートを通じ、数値では明確に分解できないフリーコメントを整理・分類することで、参加者の満足や不満を体系的に把握することに努めています。その結果からイシューを特定し、真の原因へアプローチする方策を検討する意識が養われました。 チーム視点は整う? さらに、日常業務においても、チームメンバーとイシューに対する視点を合わせ、要素を丁寧に分解することが大切だと考えています。問いかけを通してメンバーの意見を引き出し、原因や方策を決めつけることなく、常にフラットな視点で課題に向き合う姿勢を心がけたいと思います。

データ・アナリティクス入門

ロジックで拓く成長の一歩

何故手順を明確に? これまで「何となく」で進めていた問題解決のステップについて、今回あらためて「What, Where, Why, How」を意識する重要性を実感しました。手順を明確にすることで、全体の流れが整理され、取り組みがより効果的になったと感じます。 現状のギャップは? また、日常業務においてしばしば指摘されるように、「あるべき姿(目標)」と「現状」とのギャップが課題であるという考え方は、自分自身の問題発見力の不足を強く意識させる要因となっています。全体的な視点で課題を捉えたつもりでも、見えていない問題が存在する可能性があるため、ロジックツリーやMECEといったフレームワークの有用性を改めて認識しました。 遅れはどう取り戻す? 実際、現状では採用目標(ありたい姿)に対して採用実績が未達の状況です。今月である第3四半期が締まり、来月から第4四半期に入るため、これまでの遅れをどのように取り戻すかについて、ロジックツリーやMECEを活用して具体的な施策の検討に結びつけたいと考えています。 どんな課題に挑む? 具体的には、以下の点について課題を追求していきます。 ・母集団形成がうまくいっていないため、応募を阻害している要因や、求人票を見ても応募に至らない理由の究明 ・先月と比べて書類選考通過率が大幅に低下しているため、不合格となる要因の分析 ・面接実施率を向上させるための施策の検討

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

クリティカルシンキング入門

深掘りで変わる!バイアス解消術

ライブ授業で得た気づきとは? ライブ授業の実習を通じて、自分の思考にバイアスがかかっていることを実感したため、物事を深掘りすることの重要性を改めて感じました。MECE(Mutually Exclusive, Collectively Exhaustive)やロジックツリーといった手法を学び、それを自分のものとして使いこなせるようになることで、より深く物事を考え振り返る行動につなげることができると考えています。 提案資料にどう活用する? 社内システムの担当として、ITを駆使し事業課題を解決するシステムの企画や立案を行う際には、一度自分の考えを止めて客観的な視点を取り入れ、提案資料にその考えを反映させるよう努めています。そうすることで、より説得力のある資料を作成できるのではないかと考えています。また、部下との評価面談では、クリティカルシンキングを活用して部下の考えを引き出し、自分の意見も効果的に伝えることができると思っています。 判断を支える習慣とは? 自身で何らかの判断を行う際には、なぜその判断に至ったのか自問する習慣を身につけることが重要です。その問いかけをロジックツリーなどに書き起こして思考を整理します。これを実践するために、PCの付箋アプリにこれらの行動を記載して常に視界に入れるようにし、ロジックツリーなどで思考を整理するためのメモ用紙を常に手元に置いて実践していきたいと考えています。

データ・アナリティクス入門

平均に惑わされない、本質を探る

平均値だけで信頼できる? 平均値だけに頼ると、誤った仮説に導かれる可能性があると学びました。今後、データに向き合う際は、代表値だけでなく散らばりにも十分に気を配ることを心がけます。 どうやって指標を使い分ける? 具体的には、単純平均、加重平均、幾何平均、中央値といった指標を意識して使い分け、状況に適した分析を行いたいと考えています。 SNS分析はどう進める? また、SNSコンテンツの制作分析においては、各カテゴリによって、反応が良い投稿でもインプレッションが伸びにくい場合や、逆に反応が少なくともインプレッションが増えるケースが存在することに気が付きました。このような現状から、再現性を持ったPDCAサイクルの実現が課題であると感じます。 どの手法で再現性を高める? そこで、各コンテンツカテゴリについて平均インプレッションとユーザーの反応(例えば、いいね数など)の相関や散らばりを分析することで、再現性の高い投稿カテゴリを見つけ出せる可能性があると考えています。 具体的な分析アプローチは? 具体的なアプローチとしては、まずコンテンツカテゴリの整理を行い、外れ値を除いた各カテゴリごとの平均インプレッションを調査します。次に、平均インプレッションとユーザーの反応数の相関関係や、データの散らばりについても検証します。特に、散らばりが小さいカテゴリは、再現性を高めやすいと捉えています。

クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

デザイン思考入門

全体を捉える登山の教訓

知識の罠に気づくか? 業務系システム開発では、顧客の業務知識が不可欠です。多くの経験を積んでいくうちにさまざまな知識を吸収できる一方、顧客の抱える課題を定義する際、その知識が逆に思い込みに陥る原因ともなりかねません。実際、ある講義での体験では、登山中の一場面だけに目を奪われ、準備や登山後のプロセスという全体像を見失ってしまったと感じました。このように、顧客のことを考えているつもりでも、自分の頭の中で構築したイメージにとらわれやすいという問題意識が生まれました。 顧客の本音を引き出す? 新規案件のヒアリングでは、課題定義を意識しながら、まず顧客が困っている事柄を書き出してもらい、自分なりに整理してみました。講義で学んだ一次コーディングを参考に、何も知らないという姿勢で質問を続けた結果、顧客自身が「当たり前」と考えている部分を改めて考えさせられる場面が増えました。対話を重ねることで課題が可視化されるプロセスを実感し、より具体的に問題に向き合う大切さを学びました。 全体を見渡すには? 登山の例においても、単に登山中だけにとらわれず、準備やその後の過程も含めた全体を見渡すことが必要だと感じました。どのような課題定義においても、まずプロセス全体をしっかりと考えることが、より正確な理解へとつながると実感しています。今後はこれらの気づきをもとに、広い視野で課題解決に向き合っていきたいと考えています。

デザイン思考入門

受講生が感じたデザインの魅力

デザイン思考の基礎は? 6週間にわたり受講したデザイン思考の入門講座では、これまで漠然としていた基礎体系が明確になり、その各ステップや方法論に触れることができました。従来からあるKJ法も実は発想の一手法であり、シンプルながら発想の視点を巧みに整理するSCAMPER法の学びも非常に興味深かったです。 従来手法との違いは? ただ、従来の問題解決手法との違いや、どこがどの程度斬新であるのか、またどのような問題に効果的か逆にどのシチュエーションで難しいのかといった点については、入門編だけでは十分に納得できず、もっと深く知りたいと感じました。 感覚での発見は? バックパックに関する課題を通じて、人間の感情や感覚を軸とした問題発見のアプローチを実感できた点が印象的でした。 組織への応用は? また、企業や組織というマクロな課題に対しては、日常の業務にそのまま適用するのは難しいと感じました。しかし、対クライアントやチームとの対話など、個々のコミュニケーションの中で共感や創造力が発揮される場面では、大きな可能性を感じます。 学びをどう活かす? 今回学んだ内容を、同僚や後輩にも伝え、彼らの反応を見ながら自分なりに講義の内容を説明してみたいと思います。実践を通してデザイン思考がどのような場面でどのような価値を生むのかを探り、理解を深めていくことが今後の課題だと感じました。

データ・アナリティクス入門

仮説思考で課題を究める実践術

フレームワークは何に役立つの? フレームワークの使いどころについて、3Cや4Pといったものは聞いたことがあっても、実際にいざというときに活用できるかどうかが重要だと感じました。今回の実習では、仮説を立てる際に有効に使えると実感できたため、今後すぐに引き出せるように知識整理ツールで整理しておきたいと思います。今後触れる新たなフレームワークも同様に蓄積していくつもりです。 仮説思考で未来は変わる? また、仮説を考えること自体に意義があるという新たな視点も得られました。これまでは、漠然と考えるべき時に考えるという認識でしたが、仮説思考を業務に取り入れることで、課題に対するアプローチがより具体的かつ効率的になると感じています。今後は、積極的にこの考え方を意識して、業務改善に役立てていきたいと思います。 課題解決のヒントは? 部署や会社内に存在する課題を、フレームワークを活用して仮説を立てることで、本質的な問題点の抽出や、課題解決に向けた具体的な行動への落とし込みが可能になると考えます。漠然と感じる課題を仮説によって明確化し、実際の状況把握やデータ収集を通じて、もっともらしい原因に絞り込むことが大切です。そして、その原因を排除するための具体的な行動計画へと繋げ、もし課題が解決しなかった場合には、新たな仮説を立て行動に移すというプロセスを繰り返すことで、問題解決へと導くことができるでしょう。

「課題 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right