クリティカルシンキング入門

思考を深める問いの力

問いの意義は何? 問いの形を用いる理由は、人間の特性として問いかけられることで頭が活発に働くためです。ただ情報を与えられるだけでは考えず、課題や疑問にも気づかないことがあります。そのため、自分の思考を整理する際には「問い」を優先して考えるべきです。特にメンバーに課題を意識してもらうために問いを立てることは効果的です。 メタ認知を鍛えるには? メタ認知を鍛えるのも重要です。これは主観を客観に変える力を持つことで達成できます。異なる業種や職種で離れた位置にいる人と深く意見交換をすることで、このメタ認知能力を向上させることができます。この能力は、上司や他部署の視点を取り入れ、多角的に物事を捉えるために活用できます。 業務改善の手法は? 具体的な業務改善の場面では、問いを立ててピラミッドストラクチャーを使用し、漏れがないかを確認します。改善が成功すれば、その問いが解決されたかを振り返ることも重要です。また、仮説を立て、それに対する上司や異なる意見を受け入れ、修正しながら想定を広げていくことが求められます。これは日常業務だけでなく、他の会社の方との深い意見交換の場でも活かせます。マネジメント手法や思考方法などについての議論を通じて、自分の視野を広げることができます。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

データ・アナリティクス入門

振り返りが未来を変える瞬間

復習はどう進める? これまでの学びを振り返り、今後のありたい姿と具体的な取り組みを体系的に整理できました。振り返りを進める中で、全ての内容を完全に洗い出せたわけではなく、すでに忘れてしまっている部分も多いことに気づきました。そのため、何度も繰り返し復習し、実践の中で活用することが大切だと感じています。 管理とサポートの課題は? 私の業務は、製品の管理とサポートに関わるものです。サポート内容に対する不満と製品そのものへの不満があり、それぞれ解決すべき課題が異なります。また、即座に対処できるものと、投資や時間を要するものも混在しています。相関分析を活用して、不満の原因となる主要項目を特定し、優先順位をつけた上で対応していく意向です。 方向性のズレはなぜ? これまでの学びの中で、方向性を見誤ったり着眼点がずれてしまうことがありました。そのズレが生じた原因を、経験や定性的なデータをもとに検証し確認する必要性を感じています。さまざまなフレームワークを活用し、仮説を立てたり目的を明確にすることが、今後の正確な分析に欠かせないと考えています。ただし、数値だけに頼ると誤った解釈につながる恐れがあるため、解説書や事例を通じて知識をさらに深めるよう努めたいと思います。

データ・アナリティクス入門

分解で見える企画成功の秘訣

どうして分解が必要? 問題を特定するために、物事を分解する重要性を再認識しました。特に、What、Where、Why、Howといった各要素を順序立てて整理することが大切ですが、どうしても先にHowに偏らないように注意が必要です。また、原因を探る際にも、対概念を活用して思考の幅を広げることで、行き当たりばったりにならないよう努めています。 企画はどう進む? このアプローチは、マーケティング施策の企画や振り返りの段階で活用したいと考えています。企画時には、お客様の課題を起点としてWhat、Where、Why、Howを考慮し、振り返りの際には、企画当初の想定と異なる結果や、思わしくなかった施策について、原因を丁寧に掘り下げることが目標です。さらに、想定通りの成果が得られた場合にも、何が良かったのかを整理し、今後の改善に役立てていきたいと思います。 年度末は何を見直す? 年度末の振り返りにおいては、良かった施策、期待に沿わなかった施策、今後は中止すべき施策、そして継続すべき施策を洗い出し、それぞれの原因を細かく分析していく予定です。この手法は、私自身だけでなく、メンバーとも共有しながら進め、今後のマーケティング施策の質の向上に繋げていきたいと考えています。

戦略思考入門

選択と集中が導く成長 戦略で切り拓く未来

精神論は成果に繋がる? 私は精神論に偏り、あれもこれもすべてやってみようという気概で取り組んでいましたが、その結果として実際に習得できた実感は得られませんでした。講義で強調されていた「選択と集中」の視点を大切にし、広く浅く学ぶのではなく、理解から実践へと移行できるよう、繰り返し学び、アウトプットと思考の整理に努めていきます。 転換期の戦略はどのように? 100年に一度と言われる転換期の業界において、社内戦略や将来予測を共有する際、顧客や自社、他社、さらには潜在的な競合の可能性も客観的に把握し、それを基に論理的なプレゼンテーションで上層部を動かしていくことが必要です。具体的には、将来的に自部門のメンバーをどのように活躍させるか、またその活躍が社会や会社にどのように貢献し、お客様へどのような価値を提供するのかを徹底して追求していきます。 戦略実行は効果ある? PEST分析や業界内外の動向に敏感にアンテナを張りつつ、各課題に対して2週間単位で戦略を立案し、それを実践していきます。その戦略を第三者に説明し、改善点についてフィードバックを受けることでさらに向上を図ります。また、各テーマごとに日程を設定し、限られた時間内で一つひとつを丁寧に検討していきます。

データ・アナリティクス入門

物流の待機料問題を解決する分析手法の習得

分析の基本とは? 「分析とは比較である」という教えについて学びました。これは、課題を要素に分解して整理し、個人や会社の状況に応じた基準(目的)を設けて、その要素と基準を比較することを意味しています。基準を「達成すべき目的」とすると、各要素の優先順位や捨てるべきところが明確になってくると感じました。逆に、基準に満たない要素は改善策の検討対象として捉えることができることも学びました。 物流業界での分析方法は? 私は物流会社で働いており、2024年問題の一つとして「待機料」の明確化が挙げられます。待機という問題を要素(要因)に分解し、それらを自社都合と輸送会社都合にグループ化することで、分析の対象が明確になると考えました。 データ活用で何が変わる? 現在、導入済みのアプリから取得できるデータを使い、要素を整理して分析対象を決定する予定です。本講座を通じて、適切な分析方法を理解していこうと考えています。 待機料と時間の相関は? 具体的には、待機料の標準偏差値を算出することで支払い金額の正常範囲を決定し、異常値はチェックする体制を構築します。また、待機料の発生要因と待機時間の相関関係を数値化し、どの要素に対して改善策を打つべきかを社内で共有します。

クリティカルシンキング入門

営業課題を解決!イシュー特定の重要性を実感

イシューを特定する重要性とは? イシューを特定することの重要性を、学習を通じて実感することができた。と同時に、適切なイシューの捉え方の難しさも感じるようになった。本質を捉える「問い」にたどり着くまでの時間や準備も重要だが、自分一人で解決するという意識が強かった。しかし、「問いを残す」「問いを共有する」など、メンバーと一緒に考え、悩むことでも良いと感じるようになった。また、イシューを特定することで論理的な枠組みや適切な根拠を導きだすことも学んだ。 進捗遅れを解消するには? 所属する部署で進捗が遅れている営業課題を解決するためのイシューを特定し、幹部と共に論議した。その結果、やるべき活動や期間、到達目標、活動の見える化の手法などを整理した。幹部と共同で考えることでイシューを共有し、一体感をもって取り組むことができると感じた。 課題と解決策をどう共有する? 具体的には、現状結果から課題とあるべき姿とのギャップを分析し、そのギャップを解消する課題を幹部と共有した。部署としてのイシューを特定し、相互に論議して解決策と優先順位を決定した。さらに、定期的なミーティングを計画し、イシューから離れたり方向性が分散しないように継続して取り組むことが重要だと学んだ。

データ・アナリティクス入門

ロジックツリーで見えた解決の道筋

問題解決の第一歩は? 優先度や重要度が高い問題を選び、結果から要因を抑えることが重要です。以下のプロセスに沿って進めます。 まず、現状把握です。直面している課題や状況を明確にします。次に、原因の特定を行い、問題箇所を絞り込み、その原因を分析します。最後に、原因に対する有効な解決策を考えます。 多様な視点を持つ意義とは? この一連の流れをスムーズに行うためには、もれなくダブりなく、意味のある分け方が必要です。そのためには、多様な視点や切り口を持つことが重要です。 経験に頼る危険性は? 長い間仕事をしていると、経験や勘に頼りがちですが、ここでは必ずしもそれが最善策とは限りません。プロセスを再確認し、思い込みを排除するために要素を分解し、状態を把握して、問題を多く出すことが求められます。 ロジックツリーの活用法は? そのために、ロジックツリーを使用する機会を増やしていくことが有効です。実際の職場で何が起きているのかを確認するためには、課題をロジックツリーを用いて整理し、自分が把握できていない部分を確認することが重要です。 問題の優先順位をどうつける? その上で、優先度や重要度が高い問題を明確にして対策を立てることが必要になります。

デザイン思考入門

言語化で磨かれる提案の極意

課題を明確にできた? IRコンサルティング業務では、これまでお客様の課題を明確な言葉で定義していなかったため、今回学んだ手法を通じて、お客様の状況や課題を整理できたと感じています。また、カスタマージャーニーはBtoB事業においても十分に活用できると実感しており、早速試してみたいと思います。 実践はどう進む? 実践については、4週目以降に取り組む予定です。お客様の課題を言語化することで、認識のずれが減少し、提案の精度が向上すると考えています。同時に、BtoBにカスタマージャーニーを適用することで、意思決定プロセスが可視化され、より効果的なコンサルティングが期待できると感じました。 分析法は何が鍵? また、以下の点にも留意しながら進めます。まず、定性分析は仮説の立案を目的とし、定量分析はその仮説の検証を目的とします。定性分析では、コーディングによってデータを1次コードから3次コードへと分類し、体系的に整理します。さらに、ユーザーの暗黙知を把握するためには観察を、形式知を引き出すためにはインタビューを実施し、それぞれを適切に使い分けることが重要です。最後に、ペルソナを具体的に設定し、カスタマージャーニーを描くことで、実践的な分析を目指していきます。

データ・アナリティクス入門

実データが照らす理想への道

ギャップをどう埋める? 分析の中で、あるべき姿と今後ありたい姿を明確に描き、そのギャップをどう埋めていくかという点がとても印象に残りました。売上の分析においては、MECEの考え方が非常に参考になったと感じています。実際、売上を「その他」の部分として約4割以上扱う状況で、金額ベースでロングテールの顧客層をどう検討するかが難しい課題として浮上しています。また、これまで頭の中だけで簡単に考えていた層別・変数分解も、紙に整理してじっくり考える重要性を再認識させられました。 実データはどう活かす? 現在の業務では、担当エリアにおけるエリアマーケティングをはじめ、受注・売上・在庫の計画立案とその差異の分析、さらに5年後を見据えた将来の計画の策定に取り組んでいます。顧客は代理店経由ですが、代理店の先に多様な顧客層が存在するため、その実績や市況感を的確に把握することが求められます。そこで、代理店から得られる販売実績とインタビュー内容をもとに、実態とのギャップを層別変数分解によって明確化し、これまでの勘に頼る計画立案から、実データを活用した計画への転換を図っていこうと考えています。特に顧客層の分類には重点を置き、時間をかけてしっかりと取り組んでいきたいと思います。

アカウンティング入門

ビジネスの基礎から実践まで学べるオンライン授業

学びの広がりを実感 ナノ単科の受講を通して、ビジネスの基本的な知識から実践的なスキルまで幅広く学ぶことができました。授業は録画されたビデオ講義で提供され、時間や場所に縛られずに学習できる点が非常に便利でした。さらに、演習やディスカッションを通じて他の受講生と意見交換ができ、非常に学びが深まりました。 実務応用の秘訣とは? また、講義内容は具体的なビジネスシチュエーションに即しており、すぐに実務に応用できる点も魅力的でした。理論だけでなく実際のケーススタディを通じて学べるため、知識をより実践的に理解することができました。これにより、実際の業務での課題に対する解決策を考える際に大いに役立ちました。 講師からの学びは何? 講師陣も非常に優れた方々ばかりで、質問や疑問にも丁寧に応じていただけました。自身の課題に対する具体的なアドバイスをもらえるため、学びの質が一層向上しました。また、教材も分かりやすく整理されており、理解しやすかったです。 忙しい方への学習プログラム 総じて、「ナノ単科」は忙しいビジネスパーソンにとって非常に価値のある学習プログラムであると感じました。今後も引き続き、自身のキャリアアップのために活用していきたいと思います。

データ・アナリティクス入門

仮説と枠組みが切り拓く採用戦略

枠組みは何故有効? 仮説を立てる際、何もないところから考えるのではなく、3Cや4Pといったフレームワークに沿って整理することで、思考の構造が明確になりました。実際、これらの手法を用いることで、多角的な発想が生まれ、スピードや行動の精度が向上することを体感しました。 採用戦略、どう練る? 採用担当としては、仮説思考を3Cおよび4Pと組み合わせることで、効果的な採用戦略が練れると感じています。具体的には、3C分析ではカスタマー(候補者)、コンペティター(競合企業)、カンパニー(自社)の視点から状況を整理し、4Pの枠組みではProduct(採用ポジション)、Price(給与・待遇)、Place(勤務地・環境)、Promotion(採用広告・PR)を検討することで、各視点からの課題と仮説を明確にしています。 PDCAは効果的? また、こうした枠組みを基に、毎週のデータ集計時に採用課題に対する仮説を立て、各仮説に対する検証方法を決定してデータを収集しています。その後、得られた結果を分析し、打ち手を検討した上で採用戦略に反映。定期的に効果を測定し、PDCAサイクルを実践することで、常に戦略の精度を上げていくプロセスが整っていると感じました。

「課題 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right