アカウンティング入門

仮説が切り拓く未来のヒント

事業の意義はどう? オリエンタルランドを例に、B/Sの構造を読み解くという演習を通して、事業内容や提供価値に基づいた仮説の立て方を学びました。まずは、どのような事業を展開し、どのような価値を提供しているのかを整理。その上で、経費や資産の状況から、必要な支出や現有するリソースを考察しました。 分析結果は説得的? 全体として、事業内容や提供価値に即した仮説立てが非常に説得力があり、分析が的確に行われたと感じました。次回は、この分析結果を踏まえて、さらに具体的な行動計画に落とし込むと、知識の実践的な活用が一層深まるでしょう。 資金運営の課題は? また、実際の分析過程においては、非日常感の提供という点で、資産や経費の管理が徹底していることが強みとして浮かび上がりました。一方で、いずれの取り組みも大規模な資金を要するため、調達面での課題がある点も見受けられました。企業の事業形態や実態を十分に理解することが、より精度の高い仮説形成につながると再認識しました。 他社の検証はどう? さらに、他社の分析や情報収集においては、まず気になる企業の事業内容や提供価値について、思い描く仮説を立てることが重要です。その後、その仮説に基づいてどのようなP/LやB/Sが存在しうるかを考え、実際の数字と突き合わせることで、自分の仮説の妥当性を評価することができます。仮説が一致していれば自信につながり、もしずれている場合は、着目すべきポイントを学ぶ良い機会となるでしょう。 知識活用はどのように? この学びを今後のステップアップに役立てるためにも、得た知識の活用方法を具体的に考え、自己の分析スキルをさらに磨いていってください。

デザイン思考入門

定性分析で見える現場の真実

定性分析はどう整理? 現在、自社の業務改善のための分析を進める中で、これまで漠然としていた内容が「定性分析」であったことに気づき、大きな発見となりました。業務のやり方は数値で把握しにくいため、現場での観察やインタビューを通じて状況を捉え、得られた情報から実態を明らかにする必要があると感じました。また、コーディングにより一次コード、二次コードと分類し、フレームワークやプロセスに落とし込む方法を実践することで、今後も学びを深めていこうという意欲が湧きました。 顧客課題をどう捉える? 顧客課題仮説の導出は非常に難しいと実感しました。定性分析でコーディングを進める際、観察やインタビューから得られる情報が十分かどうか不安になるとともに、ペルソナやカスタマージャーニーマップの捉え方によって仮説の内容が変わる点も大きな気付きでした。今回の講義で学んだのは、顧客課題仮説を広く捉えるのではなく、焦点を絞り「ユーザー」「状況」「課題」「ソリューション」という具体的な文書化を行う手法であり、その手法は非常に有効だと感じました。 問題本質をどう捉える? さらに、「問題の本質を捉える」から始まり、洞察の整理と可視化、顧客課題仮説の作成、ユーザー中心の視点の維持、そして検証と改善という流れを作ることの重要性を学びました。定性分析では、プロセスやフレームワークの構築により、定量分析で検証すべき仮説が明確になるという点も理解できました。実際の現場での観察からは、ユーザー自身が気づいていない暗黙知に触れることができる有効な手法であることを実感しました。今後はこれらの経験を活かし、顧客に対する課題分析をさらに実践していきたいと思います。

クリティカルシンキング入門

論理的思考でビジネス成功の近道

論理的思考とは何か? ビジネスにおける「論理的思考」とは、相手に対してわかりやすく、簡潔に伝えることを指します。どんなに素晴らしい提案でも、相手に伝わらなければ意味がありません。この点を再確認することができました。 どう制約を超えるのか? 人間は無意識のうちに考えを制約しています。これは自覚しにくいものですが、「3つの視」などの考え方を持ち、それを活用していくことが重要です。目の前の問題に対して正しいアプローチで取り組むことが大事であり、この姿勢が一見遠回りに見えたとしても、それが実は最速の方法であることも学びました。 商談で「3つの視」を活用? 顧客との商談や提案においては、「3つの視」で顧客を理解することが、彼らの課題を正しく把握する助けになります。提案内容を検討する際には、「目的は何か」「思考の癖はないか」「問い続けること」を繰り返し考えることで、本質的な提案へとつなげることができます。そして、相手に伝える際には、内容を理解してもらい、行動を引き出すことができるかを考慮しながら資料を作成することが大切です。 クリティカル・シンキングをどう実践? クリティカル・シンキングの3つの姿勢を常に可視化することも重要です。PCやタスク管理ツールなど、常に目に入る場所に掲示することで、自分がクリティカル・シンキングを実践できているかを振り返る環境を整えます。 「3つの視」を書き出す効果は? また、「3つの視」を紙に書き出すことも有効です。頭の中で考えるのではなく、常に紙とペンを用意して、整理できる環境を整えます。物事を考えるときに「3つの視」で書き出すことを習慣づけることが、おすすめの方法です。

クリティカルシンキング入門

視点を広げる学びの旅へ

偏りを克服するためには? 考えやすいことや自分が考えたいことに偏りがちな点は、多くの人が感じる悩みです。この偏りを克服するためには、意識して自分自身をクリティカルにチェックすることが求められます。また、他者とディスカッションを重ねることで、自分では気づけなかった視点に気づいたり、自分の考えを確認したりすることができます。これらは、成長するための重要な営みです。 多面的な視点を持つには? 偏りの排除には、以下のような方法があります。まず、誰の視点で見るか、さらに上位の立場から見る視座、横から見る視野の3つの視点を持つことが重要です。また、物事を部分集合としてとらえ、ロジックツリーを用いて分解し考えることも効果的です。具体的なものを抽象化し、共通する抽象概念から他の具体的な事例を検討することも有益です。 プロジェクト計画の改善策は? プロジェクト計画のレビューでは、抜け漏れや考慮漏れを確認し、直面している課題に対して、現在の解決策以外により良い方法がないかを考えることが大切です。さらに、上司や役員にプレゼンを行う際には、資料に説得力を持たせるためにストーリーを工夫することが求められます。また、新規事業の調査や事業計画の策定においても検討を重ねることが必要です。 視点を変えると成果が変わる? まず自分の視点で考えてみて、その後に他の視点、視座、視野で考え直すプロセスを組み合わせると、新たな洞察が得られることがあります。そして、ロジックツリーを用いて抜け漏れがないかを整理し、ストーリーを考えた後には、そのプレゼン資料が上司の視座からどのように見えるかを意識することが成果を高めるポイントとなります。

データ・アナリティクス入門

実体験から学ぶ問題解決の秘訣

理想と現実の違いは? ありたい姿と現状のギャップを整理し、問題点を明確にすることが非常に大切だと感じました。キャリアに関するレクチャーではよく耳にする言葉でしたが、実際には問題解決の着手点としてその意義を強く実感しました。講義の中には「目についた問題に手をつけるのは運であり、経験がある場合のみ解決可能なケースもある」という話があり、新たな場面ではこの教えが実際に有効であると感じました。 MECE実践はうまくいく? また、MECEの「漏れなく、ダブりなく」物事を切り分ける考え方ですが、頭では理解していても、実際に実践する際はその徹底が難しいと感じました。紙に書き出すなど、訓練を重ねることでスキルとして定着させる必要があると実感しています。 根本原因の探し方は? さらに、分析に留まらず、隠れている真因を特定するという視点が問題解決の前提として重要であることを認識しました。目の前のトラブルや課題に対して、対症療法や思いつきに頼るのではなく、根本原因を追求して解決を導く行動指針として、この講座の内容を日常業務に取り入れたいと思います。 庫内整理の対策は? 具体例として、庫内在庫の整理においては、庫内が満杯になり在庫の格納が難しくなった場合、調達部門に入荷抑制を依頼する必要があります。その際、MECEの考えを活用し、商品の特徴に応じて分類することで、どの商品が庫内を圧迫しているのかを特定することが求められます。 作業エラーの真因は? また、作業エラー、特に誤出庫の原因を特定する場合も、作業員が実施している一連の作業を漏れなく、ダブりなく羅列し、原因を明らかにする手法が必要であると学びました。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

データ・アナリティクス入門

論理を楽しむ!ロジックツリー活用術

WhatとWhereを問いかけると何が見える? What、Where、Why、Howのステップを通じて全体像を分析することの重要性を学びました。これまでは問題解決方法(How)だけに焦点を当てていましたが、WhatやWhere、Whyを問いかけることで、これまで気付かなかった不明確な点が見えてくる過程がとても楽しいと感じています。 ロジックツリーで視点をどう拡げる? また、ロジックツリー(MECE)を活用することで、「もれなく、だぶりなく」分類整理や、層別分解、変数分解が可能になり、とても興味深く学びになりました。物事を分解し、細分化することで新しい視点が得られ、それが意思決定や問題解決に役立つと感じています。 日々の業務にロジックツリーを応用するには? 日々の業務を管理する際に、上記のロジックを応用していきたいと思います。まだ具体的にどのキャリアに進むかわからないものの、ロジックツリーを活用することで、課題を整理し、聞き手にとってわかりやすい説明ができるだけでなく、周囲の同意や協力を得やすくなります。プロジェクトマネージメントの仕事では、know-howやプロセスの整理ができていたものの、周囲の理解を求める際の論理的な説明スキルには不足を感じていたため、これを改善していきたいと考えています。 ロジックツリーを習得する方法は? ロジックツリーを日常的に活用し、自分のものとして習得したいです。具体的には、MECEを用いてAIに壁打ちし、アイデアの整理を行います。さらに、メモに書き出し、図にすることで頭の中を整理し、スキルアップのHowツリーを更新していこうと考えています。

データ・アナリティクス入門

仮説とフレームワークで導く新発想

仮説の意義はどう捉える? 仮説の意義と4P・3Cのフレームワークの活用について考察しました。現状や現象を整理し、そこから課題を明示する方法としてフレームワークは有効な手段だと認識しています。しかし、設問では仮説の立て方が問われ、その内容が単に問題点や疑問点の抽出に留まっている点に疑問を感じました。仮説を「ある論点に対する仮の答え」もしくは「分からない事柄に対する仮の答え」と定義するならば、現状の把握とその先の打ち手を考察する過程で生じるのではないかと思います。このため、ビジネス上の意味合いに限定して用いるほうが適切であり、安易に「検証」という言葉を使わないほうが良いと考えました。こうした疑問を通じて、仮説とフレームワークの使い分けが整理できたと感じます。 4P・3Cの整理法はどうなる? また、事業計画や事業分析において、4Pや3Cというフレームワークで物事を整理する手法は非常に重要です。思いつきで捉えるのではなく、フレームワークに沿って取りこぼしのない視点で分析することで、発見された課題や問題点が具体的になり、改善策を立案するための基盤となります。さらに、第三者に内容を伝える際にも、論理的に整理された情報は理解しやすく伝わります。 正しい検証はどう進む? 実際の取り組みでは、4Pや3Cのフレームワークを活用した上で、問題点に対して「〇〇ならば▼▼である」という形式で仮説を立て、その上でデータ分析により課題の抽出ができるかを検討しています。これは、問題を具体的なエビデンスをもって示すためのプロセスであり、その後の打ち手の考察へと順序立てて進めることが重要だと感じました。

リーダーシップ・キャリアビジョン入門

受講生が描く学びの軌跡

モチベーションってどうして? 今回学んだ内容は大きく2点あります。まず、モチベーションについてです。モチベーションは個々に異なるものですが、マズローの5段階欲求や動機付け・衛生理論などを通して、自身の現状を把握する方法を学びました。特に、なぜ働くのかという動機付けの本質を理解することが、効果的なインセンティブの活用に繋がると感じました。また、モチベーションが低い場合には、その理由を明確にし、どのように向上させられるかを検証する必要があると実感しました。一方で、モチベーションが高い場合においては、現状で十分なのか、あるいはさらに高い目標があるのかを確認していくことが大切だと思いました。 振り返りはどう機能する? 次にフィードバックについてです。振り返りの大切さを再確認するとともに、振り返りの環境整備や質問力の向上が不可欠であることを学びました。数字だけの確認に留まらず、本人がどのように考え、どこで迷い、何がうまくいったのかといった具体的な点を掘り下げる質問が重要だと気づきました。これにより、課題の発見や他部門への展開が可能になると考えています。 1on1ミーティングでどうする? また、14日に予定されている1on1ミーティングに向けて、今回学んだ内容を復習し、先月の振り返りのための具体的な質問事項を事前に作成する予定です。数字的な成果について、できたこととできなかったこと、そしてその理由を整理し、モチベーションのフレームワークを実際に活用してみたいと思います。さらに、効果的なコミュニケーションを実現するために、聞き出す環境や信頼関係の構築も意識して取り組んでいきます。

データ・アナリティクス入門

データの先にある学びの秘密

講義内容はどう感じた? ライブ講義を拝聴しながら、ポイントを迅速に判断し整理する力がまだ十分でないと感じました。どのデータセットを扱う際にも、何を明らかにしたいのかという目的意識をしっかり持ち、ロジカルシンキングや仮説立案のスピードを高める必要があると痛感しました。大量のデータを扱う中で、解決策の発見に注力するあまり、次第に目的から逸れてしまうことが実務上でも生じるため、その兆候を早期に掴むことが重要であると改めて認識しました。 営業戦略はどんな課題? 営業データを活用した営業戦略の立案においては、成約率向上という課題に対して、これまでの商談データを基に再検証を行う必要があります。過去にはあまり意識されなかったデータの粒度の粗さや、文章化およびビジュアル化の不足が、組織全体の納得感に影響していたと感じます。具体的には、なぜ成約率が低いのか、セグメントごとや担当者ごと、そして営業ステップごとの課題を明確にし、それぞれの原因を検証した上で、効果的な解決策を導き出したいと考えています。 UX改善は何が必要? サービス利用データを活用したUX向上施策の立案では、SaaSサービスのアクセスログをもとに、どの機能が利用され、どの機能が利用されていないかを明確に分類することが求められます。使われていない機能については、導入時からの利用状況や徐々に利用が減少しているのかなど、その背景を整理しながら原因分析を行います。さらに、仮説を立てた上で改善策を検討し、場合によっては機能の廃止も含めた対応を実施するために、顧客へのインタビューなども通じて検証を進めていきたいと考えています。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

「課題 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right