アカウンティング入門

企業の数字を読み解く楽しさに目覚めた瞬間

損益計算書の違いをどう理解する? 損益計算書はビジネスモデルによってその構成比率が全く異なることを、事例を通じて学ぶことで非常によく理解できました。特に、実際のケースを用いてその時代に発生した出来事に企業がどう対処したのかを数字から予測することができる点がとても面白く、個人的には大きな発見でした。 バランスシートをどう活用する? 業務においては素直で王道的なバランスシート(B/S)に触れる機会が少ないものの、他社のB/Sを紐解くことで株式投資のスキルを深めることができると感じました。これからは、IRレポートを読むだけでなく、数年単位でのB/Sを眺めて投資先の選定に役立てたいと思います。 数字の裏をどう読むか? 具体的には、まず興味のある企業を選定し、その企業のホームページを見て提供する価値について考えた上で、B/Sを深掘りしていきたいと考えています。 苦手意識をどう克服した? 今回、このコースに参加するまではファイナンス関係の数字やワードに対して苦手意識を持っていましたが、基礎を学ぶことで数字の裏にあるビジネスについて読み取る楽しさを味わうことができました。今後も実践的なスキルを身につけるために、さらなる深掘り学習を続けていきたいと考えています。

データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

戦略思考入門

実践で磨く戦略差別化の秘訣

ターゲットはどう選ぶ? これまで、差別化を考える際に自社の強みを基準にして戦略を立ててきましたが、まずはターゲットとするクライアントを明確に定めることの重要性に気づきました。さらに、ターゲットの視点から自社が通常競合と捉える企業だけでなく、業界を問わず強豪が存在するか、その強豪と比較して優位に立てるか、また模倣されにくい施策であるかを検討する必要があると学びました。 部署の戦略はどう見直す? 会社全体では差別化できる部分があるものの、所属する部署においてはその点が十分に発揮できていないと感じています。上司が自部署の戦略を考える中で差別化案を提示しているため、これまで自分の意見を積極的に述べる機会が少なかった状況でした。そこで、自らフレームワークに沿って部署を分析し、自身の視点での差別化戦略を模索するとともに、上司の戦略も同じくフレームワークを用いて検証していくつもりです。 現状の課題は何か? 担当部署には多くの競合が存在し、自社全体の強みと比べると、部署内の強みは薄いという現状を改めて認識しました。今後は、自部署の現状を十分に分析した上で、取るべき方向性を明確にし、差別化できるポイントや今後伸ばすべき点について上司と議論していきたいと考えています。

データ・アナリティクス入門

実務で輝く!数値戦略の新発見

代表値の選び方は? データの特性に合わせた代表値の取り方を誤ると、算出された数値が意味を持たなくなることを再認識しました。成長率などの数値結果に触れる機会はあったものの、その計算に幾何平均が用いられていることは、私にとって新たな学びとなりました。 標準偏差の使い方は? また、これまでグラフなどのビジュアルに頼ってデータの散らばりを把握していたため、標準偏差を用いて数値として表現するという手法に触れることができたのは非常に興味深かったです。 幾何平均で何が変わる? 加重平均や中央値は、データの検証において従来から活用していたものの、売上の伸長率を算出する際に幾何平均を用いる方法は、早速実務に応用していけると感じました。さらに、標準偏差を算出することで、データのばらつきを具体的な数字としてイメージし、説明に説得力を持たせる工夫を進めたいと考えています。 実務でどう活かす? 具体的には、部門の各営業メンバーの業績比較や、セグメント別の業績比較において個々の成長率を算出し、その結果を問題点の洗い出し資料として活用したいです。また、商品別の売上推移に成長率を適用することで、優劣を明確化し、問題への対策検討に役立てたいと考えています。

データ・アナリティクス入門

ロジックツリーで見えた解決の道筋

問題解決の第一歩は? 優先度や重要度が高い問題を選び、結果から要因を抑えることが重要です。以下のプロセスに沿って進めます。 まず、現状把握です。直面している課題や状況を明確にします。次に、原因の特定を行い、問題箇所を絞り込み、その原因を分析します。最後に、原因に対する有効な解決策を考えます。 多様な視点を持つ意義とは? この一連の流れをスムーズに行うためには、もれなくダブりなく、意味のある分け方が必要です。そのためには、多様な視点や切り口を持つことが重要です。 経験に頼る危険性は? 長い間仕事をしていると、経験や勘に頼りがちですが、ここでは必ずしもそれが最善策とは限りません。プロセスを再確認し、思い込みを排除するために要素を分解し、状態を把握して、問題を多く出すことが求められます。 ロジックツリーの活用法は? そのために、ロジックツリーを使用する機会を増やしていくことが有効です。実際の職場で何が起きているのかを確認するためには、課題をロジックツリーを用いて整理し、自分が把握できていない部分を確認することが重要です。 問題の優先順位をどうつける? その上で、優先度や重要度が高い問題を明確にして対策を立てることが必要になります。

マーケティング入門

ナルホド!STP分析で未来を変える学び

商品開発の学びを深めるには? 商品開発のプロセスや既存商品のSTP分析についての学びが主なテーマでした。STPについては何をすべきか理解していましたが、具体的な内容については多く学ぶことができました。特に、ポジショニングマップ作成時の2軸の設定方法が具体的で、実践の中で役立つと感じました。 提案力を高めるための戦略は? 今後、分析提案を行う際には、STP分析を用いる機会が必ず訪れると思います。限られた知識のままだと提案が漠然としたものになってしまいますが、意思決定者が納得できるような具体的な提案を目指したいです。「市場が本当に存在するのか」と「競合との差別化」という2つの点は特に難易度が高いので、これらをクリアするためのロジックと情報を日々集めていきます。 成功と失敗から何を学ぶ? また、成功者や企業からの学びは重要です。大手企業の事例はよく知られていますが、資金力や市場での立ち位置が異なるため参考になりにくいこともあります。そこで、中小企業の成功事例も積極的に取り入れ、実務では得られにくい仮説と検証を歴史から学んでいきたいと考えています。成功事例だけに目を向けがちですが、失敗事例の方が要因を特定しやすいため、幅広い視野で分析していきます。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

クリティカルシンキング入門

思考の癖を再発見!クリティカルシンキングで成長する 방법

Week1からの学びを見直す 今週は全体の振り返りとして、week1からの学びを見直す機会がありました。具体的には、多くのことを学びましたが、特に以下の3点が重要だと改めて認識しました。 1. 自他の思考の癖を前提におくこと。 2. 問いを設定すること。 3. 問い続けること。 これらの点を意識しつつ、クリティカルシンキングが上位概念として存在することを再認識できました。 メモの整理とアウトプットの重要性 week1から残してきたメモを振り返り、整理することで、自分の中に学びを深く落とし込むことができました。さらに、その学びを実際のアウトプットとして反復し、定着させるよう努めています。実務での活用を意識して過ごしていますが、まだ使いきれていない学びも多いので、9月は振り返りながらこれらを活用していくつもりです。 学びの共有と実務への活用 週末までにはメモの振り返りとまとめを終わらせ、週明けにはまずメンバーに学びの共有を行う予定です。来週も実際の業務で学んだことを活用する機会が多くあり、week1からweek5で学んだ内容は全てアウトプットとして活用できる予定です。また、今後の事業戦略の立案にも早速この学びを活かしていきます。

クリティカルシンキング入門

伝える技術が劇的に向上した学びの旅

伝える目的は何? 「伝える」という点において、目的の重要性を再確認しました。前回と同様に、「誰に対して、どのようなことを求めているのか」を明確にすることが、伝達行動の鍵であると感じました。今週の学習では、視覚化によってどのように伝わりやすくなるかについて、多くの気づきを得ることができました。資料を作成する際、「これくらいわかるだろう」と思い込みがちですが、読み手の負担を軽減することが重要であると意識します。 資料作成の工夫は? アンケートや施策効果検証においてグラフや資料の作成を行う機会が頻繁にあります。最近ではCM効果検証の報告資料をまとめましたが、グラフの作成方法や強調すべきポイント、そして見やすさの追求において不足している部分が多いと感じました。資料を見返すと、多くの学びがあり、次回の資料作成に活かしたいと思います。 説明方法はどう? 週明けには、施策の打合せで概要を説明する機会があります。その際に、誰に伝えるのか、どのポイントが重要なのか、そして伝えたいことは何かを整理したいと思います。これを視覚化(文章に起こすこと、比較表やフロー図を作成すること)を通じて、初見でも理解しやすい説明をできるよう準備を進めたいと考えています。

データ・アナリティクス入門

仮説と検証で切り拓く成長

問題発見はどう進める? 問題の原因を探るため、まずプロセスごとにアプローチする手法を学びました。その中で、A/Bテストを活用し、仮説を立てた上で実際に検証を重ねる方法が効果的であると理解できました。また、総合演習を通して、これまでの学習内容を振り返り、自分の知識を整理する貴重な機会となりました。 仮説検証は効果的? データ分析においては、目的を明確にし、分析に入る前に仮説をもつことの重要性を再認識しました。分析プロセスを着実に進めるとともに、効果的な切り口でデータを把握することが求められると感じています。取り組んでいるサービスのユーザ活用場面を拡充するためには、利用シーンをプロセスに分解し、それぞれを検証した上で改善策を策定することが必要です。 分析の進め方は? 具体的には、各プロセスに対して適切なデータを条件を揃えて抽出し、抜け漏れなく検証を進めることが求められます。改善策を検討する際には、複数の選択肢を根拠に基づいて検討し、基準を設けることで効果的な施策に絞り込むことが重要です。また、分析作業は複数のメンバーで進めるため、作業開始前に目的や意味合いを共有し、各メンバーが同じ認識で取り組むことにも留意すべきだと実感しました。

マーケティング入門

顧客体験を加速させる包材の新提案

体験型価値観とは何か? 商品そのモノだけでなく体験型の+αの価値観を提供することで、顧客の満足度を向上させることを学びました。商品を理解してもらう機会になる一方で、一度離れてしまうと戻ってこないリスクもあるという話がありましたが、それでも顧客に商品の価値を伝えることは販売者にとっても良い機会だと思います。リスクを恐れずにアプローチすることで、双方の満足感に繋がり、より良い商品が生まれるきっかけになるのではないかと感じました。 包材の新たな可能性? 日々の不便さを包材の視点で解決するだけでも、顧客にとっては一種の体験価値に繋がる可能性があります。そのため、「包材による体験価値の提供としてどんなことができるか?」という視点で物事を考えると、新たな容器の開発や調達に繋がる可能性があるかもしれません。 日常に潜む体験価値に気づくには? 「カフェでケーキを食べる」という行為が一種の体験価値になっているという考え方は、これまで持っていませんでした。しかし、日々の生活の中で思っている以上に体験価値を提供されていることに気付きました。そこで、自分や周囲が「嬉しく感じたこと」や「リラックスできた瞬間」を意識的に感じ取るようにしたいと思います。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

「機会」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right