データ・アナリティクス入門

仮説から実践へ!学びの秘訣

仮説はどう考える? 原因の仮説を考える際、まずは思考を広げた後、いくつかの軸に沿って収束させるという対概念の活用方法を学びました。問題にかかわりがありそうな要素だけでなく、その他の要因も広く挙げることの重要性を再確認しました。 解決策は何で選ぶ? 次に、解決策を検討する際には、選定基準と選択肢をセットで整理することが大切であると感じました。どの軸で絞り込むかをイメージしながら、具体的な解決策の検討プロセスを意識することが、より充実した議論につながると学びました。 集客課題はなぜ? また、社内で実施する勉強会や発表において、集客面で予想を下回るケースが多い現状を振り返り、テーマや内容、告知文に加え、スケジュールや運営、形式といった運用面での見直しの必要性も感じました。 外部連携はどう? さらに、外部リソースの活用にあたっては、パートナー企業の選定が有効な解決策となる場面もあります。解決策のリストアップや選定基準の設計において、この方法が実際に役立つと実感しています。 意見はどう生かす? 最後に、Q2に記載されている二点については、必要なタイミングで適用しています。普段から基準と選択肢をセットで考え、クライアントへの説明に活かしているものの、社内に閉じた課題の解決策検討では見落としがちな部分もありました。自分が見えていない課題や第三者の意見を取り入れることにも、今後積極的に取り組んでいきたいと思います。

クリティカルシンキング入門

イシュー特定で深掘り!問題解決の新発見

問いをどう分解する? 課題に取り組む際、まず問いを立て、それを分解してイシューを特定することが重要です。これまで、表面的な課題に対して安易に打ち手を検討していたと反省し、改めて課題を分解し、イシューを特定するプロセスに取り組みたいと思います。分解の際は、MECE(モレなくダブりなく)であることや、データの加工によって新たな気づきが得られるかを吟味しながら進めることが求められます。このステップを徹底することで、安易な解決策に頼ることなく、より効果的なアプローチが可能となります。 問題の本質は何? 問題が発生したとき、すぐに施策に飛びつくのではなく、まず問いを立てて、それを分解してイシューを特定するプロセスを意識的に取り入れることが大切です。個人的には、実際に手を動かしながらアナログで書くことで課題を可視化する方が効果的だと感じています。それに際しては、MECEであるかどうかを確認し、他メンバーの力を借りて精度を高めることも重要です。 解決策はどう見極める? 問題が表面化した際には、安易に解決策を模索するのではなく、自分でロジックツリーを書いてみることが推奨されます。必要に応じてデータを確認し、イシューを特定することで、より根本的な課題を明らかにします。そのイシューは周囲と共有し、欠けや漏れがないかアドバイスを求め、さらに経営層にも報告してフィードバックを得ることで、より精度の高い解決策を導き出すことができるでしょう。

クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

データ・アナリティクス入門

職場の非効率な会議をどう改善したか

問題解決ステップの重要性とは? 問題解決には、「What」「Where」「Why」「How」の4つのステップがあります。これらのステップを順番に進める必要はなく、行き来しながら取り組むのが良いでしょう。特に問題に直面した際、いきなり「How」から始めてしまうことが多いですが、まず「What」で問題の特定に取り組むことが重要だと感じました。「What」を明確にすることで、その後の「How」のステップが実態に沿わなくなることを防ぐことができると考えます。 ロジックツリーで会議問題を解決? 私は数値を用いた分析を行う機会はほとんどありませんが、職場には多くの課題が存在します。定性的な問題でも、問題解決のステップを活用して、問題の明確化、原因の特定、なぜそうなってしまっているのか、どう解決できるかを考えることができます。 具体的な課題の一つとして、時間内に終了しない会議や目的がはっきりしない会議が頻発する点があります。これをロジックツリーを使用して分解し、原因を探り、対策を立てることができると考えます。 「あるべき姿」を常に意識する これらの課題については、現在の職場に来てからの半年間、自分なりに分析し改善に取り組んできました。しかし、周囲がその課題を認識しておらず、そのため私自身も徐々に違和感を感じなくなってきています。今後は「あるべき姿」と「What(何が問題なのか)」を常に意識することを心掛けていきたいと思います。

データ・アナリティクス入門

多角的な視点で学び直すビジネス分析技術

講座で再確認した3つのポイント 今回の講座を通じて、以下の3点について再確認することができました。 まず、多角的に分析・比較することの大切さです。次に、自分の目線ではなく、聞き手の目線や聞き手の属する組織の目線に合わせることの重要性です。そして、聞き手が普段から利用している分析の観点を押さえておくことで、話が通じやすくなることも理解しました。 保有案件と市場調査の具体的学び 具体的な学びとしては、以下の内容が挙げられます。 まず、保有案件の分析です。案件のコンディション別に受注確率を算出し、保有案件量を確度別に分類して先週との差異を出しました。また、市場調査においては、マーケット分析を自動化する手法を学びました。 売上分析と満足度調査の手法 次に、売上分析に関しては、特定マーケットに対する自社の製品・サービス別の売上を整理する方法と、その自動化について学びました。お客様満足度調査では、データを用いて定量的に経年比較を行う生産性の高い分析方法を習得しました。 実務での応用と課題解決の姿勢 さらに、新しく作成した分析結果の表やグラフをわかりやすくする方法についても学びました。 これらの考え方や手法を実務で試みました。特に、頻度の高い業務である保有案件量の分析で実践し、課題を発見。その課題を講座で確認し、解決を図る姿勢を持ちました。講座内で解決が難しい場合には、職場の周囲から教わり、解決する方針としました。

データ・アナリティクス入門

初心者でも使える問題解決フレームワーク

実践で感じた課題とは? あるべき姿と現状を比較することを心がけてきたが、いざ実施しようとするとできていないと感じることがあります。そのため、まずはWhat(問題を定める)を意識することが重要だと感じています。課題を考える際は、マーケティングの課題なのか、人材の課題なのかといったように、区分分けをすることが有効です。 ロジックツリーは効果的? 数字はロジックツリーのように因数分解することで、どの要素がどのように貢献しているのか(正負を含めて)を把握できることを初めて知り、これはぜひ身に着けたい知識です。 現状把握と意識共有の方法 まずは状態を確認し、たとえ当たり前のことでも言語化することで現状を把握し、チームでの共通認識を持つことが大切です。その後、原因となる事象を特定し、解決策の検討に進みます。ユーザアンケートをデザインする際には、仮説をもって因数分解ができるように、クロス集計も意識します。 新人教育でのロジックツリーの活用 新人教育ではロジックツリーやMECEを活用して、アンケートデザインにおける考え方の方針をチームで共有し、どんな分析ができるのか、また何をしたいのかを実際に仮レポートを作成してみることも大切です。 フレームワークの選択と目標 あるべき姿と現状を整理するために、優れたフレームワークを見つけ、それを習得することが目標です。また、教えられるように資料に整理することも心がけていきます。

データ・アナリティクス入門

数字の隠れたストーリーを探る

全体像はどう把握? データを加工する際には、まずインパクト、ギャップ、トレンド、ばらつき、パターンといった視点から全体像を把握することが重要です。その上で、数字で示すのか、ビジュアル化するのか、数式を用いるのかといった手法を選択します。予め何を知りたいのかという前提を忘れず、単に平均値を取るだけでなく、ばらつきに注目して外れ値に潜むチャンスを見出す視点が必要だと感じました。 競合比較はどう見る? 自社品の売り上げや競合との比較についても、提示された数字をそのまま受け止めるだけではなく、どこにベンチマークを置くのかを意識することが求められます。売上が前年より伸びている場合でも、市場全体が拡大し、競合もその中で成長しているのであれば、そのギャップはどこにあるのかを考える癖を身に付けることが大切です。月ごとのシェアや日々の実績トレンドを、抽象的な視点と具体的なアプローチの両面から分析し、真相に迫ることが目標です。 トレンド集計の課題は? また、毎日売上トレンドを集計し、メンバーと共有しているものの、単なるトレンド情報だけではベンチマークを示すことができません。さらに、競合品のデータもタイムリーに入手できていないため比較が難しい状況でした。ピボットテーブルで集計する前のデータ収集に手間を感じ、与えられたデータベースだけで処理しようとしていた自分の意識を改め、より柔軟な視点でデータ活用に取り組む必要性を強く実感しました。

クリティカルシンキング入門

視点を変えると見えてくる課題解決の鍵

根本原因はどう探る? 問題や課題に直面した際、それらの背景や根本のイシューを特定することが最初に、そして非常に重要であるということを学びました。イシューの特定や設定には、立場や部門の違いから様々なアプローチが考えられ、必ずしもイシューが一つではなく、複数存在することもあるという理解が深まりました。 品質不具合の真実は? 多く発生するのは品質の問題であると考えられます。社内での問題であれば、「なぜこの不具合が発生するのか」という視点でのイシュー特定が一般的ですが、逆の視点、「なぜこの不具合が顧客から受け入れられないのか」という視点でのイシュー設定も可能であるという新しい学びを活かしたいと考えています。具体的には、この不具合が直接取引の顧客でどのような問題となるのか、さらには最終ユーザーではどのような問題となるのかという視点を取り入れれば、品質責任の負担を平準化したり、過剰スペックを是正したりすることに繋がる可能性があると感じました。 会議で何を疑問視? 週次で開催される品質会議では、不具合に関する品質部門からの分析内容やその是正に向けた対策について、自分自身が何か疑問を持つように意識することが重要です。「何が問題か」「どこで発生するのか」「なぜ発生するのか」といった基本的な把握に加え、問題や品質がなぜ顧客に受け入れられないのか、顧客でどのような問題に繋がるのかという視点を持つことから始めていきたいと考えています。

データ・アナリティクス入門

数字とロジックで捉える課題解決

問題点の整理はどうする? GAILを通じて、問題点の洗い出しが不十分であると痛感しました。直面している課題や状況を明確に言語化することがまず必要であり、そのためには「あるべき姿」と「現状」とのギャップに着目して問題点を整理することが重要だと学びました。たとえば、「なぜ赤字なのか」「なぜ生徒が集まらないのか」といった問いから、まずは数字に基づいて優先的に解決すべき問題を特定し、次に具体的な解決策(how)を検討するプロセスが非常に参考になりました。 計画実績のギャップは何故? また、販売実績や利用状況の分析時には、「なぜ計画に対して実績が出ないのか」「目標に対して利用状況がどのように乖離しているのか」という問いを持つことはもちろん必須ですが、さらに、どの業態の顧客が利用しているのか、あるいは利用していないのかといった具体的な観点から問題を深掘りすることも大切だと感じました。いきなり解決策に飛びつくのではなく、what(現状把握)→where(問題箇所の特定)→why(原因の追究)→how(解決手法の検討)の流れを大切にすることが、問題解決への着実なアプローチだと考えています。 MECE活用は有効? さらに、問題解決プロセスをきちんと踏む上で、MECEの考え方は非常に有効であると実感しました。その一環として、ロジックツリーを活用しながら実績の分析を進める手法は、今後の業務にも積極的に取り入れていきたいと思います。

データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

データ・アナリティクス入門

さまざまな視点で問題解決を探る魅力

分析に必要な切り口とは? 分析を行う際には、さまざまな切り口を持つことが重要です。性別や年代といった属性に加えて、契約内容なども分析に取り入れることで、問題解決の糸口が見つかる可能性が高まります。物事を分析する際には、MECE(Mutually Exclusive and Collectively Exhaustive)の原則に従い、要素が重複したり欠けたりしていないか確認することが必要です。また、ロジックツリーを用いて、物事を分解して考えることで効果的な分析が可能になります。 問題解決に向けた新しい視点は? 分析において、それぞれの属性や切り口に新しい視点を加えることで、問題解決へと繋げることが求められています。バイアスを排除し、客観的な視点で物事を理解するためには、問題や課題を細分化して考えることが有効です。 契約者分析の具体例は? 具体例として、契約者の分析においては、契約時間帯や取引接点、折衝回数、前回の契約からの経過年数などの要素を考慮することが考えられます。また、ロジックツリーを活用し、契約率の改善を図ることができます。これにはリードの質を向上させるためのスコアリングや獲得チャネルの最適化のほか、営業プロセスとして初回アプローチの改善やフォローアップの最適化、営業担当者のスキル向上が含まれます。さらに、価値提案の強化として、パーソナライズされた提案の提供や他社との差別化も重要なポイントとなります。

クリティカルシンキング入門

思考を深める「問いかけ」の力

なぜ問いは必要? この講座を通じて、問を立てることの重要性や、そのための考え方を学びましたが、「なぜ問の形にする必要があるのか?」については深く考えたことがなかったと気づきました。問題を問いの形にすることで、解決に向けた思考を進められるということが大切だと学びました。また、講座での課題を通じて、自分が「経験や勘に頼って主観的に考えがち」であることに気づき、これからは客観的に考える方法を身につける必要があると感じました。 どの問いが響く? 「問から始める、問を押さえておく、問を共有しておく」の三点は、さまざまな場面で役立ちそうです。例えば、新規サービスの開発プロジェクトにおいても、「顧客が求めているものは何か」という問いを立て、それを常に念頭に置きプロジェクトメンバーと共有することは、今すぐにでも実践したいことです。また、リーダーの役割を担う中で、「何を課題(問い)と捉えるべきか?」を見極める訓練を積んでいきたいと思います。 正しい問いは? プロジェクトを進める際や会議、データ分析の際には、必ず「問い」を中心に置くことを忘れずに進めようと考えています。問から逸れていないかを確認し、客観的な視点で議論を進めることが重要です。また、リーダーとしてその問いが本当に解くべきものであるかを見極めたいです。講座を通じて多くのことを学んだので、これから様々な場面で実践を重ねていくことが非常に大切だと感じています。

「課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right