アカウンティング入門

ビジネスの心臓部を深掘る学び

P/Lの基礎はどう見る? 先週、P/L(損益計算書)の基本的な理解が大切であると学びました。特に経常利益について、これは持続的に利益が出るかどうかを測る指標であり、本業の儲けに加えて財務活動での収益や費用が常に発生するという基本的な認識を持てたことが、私にとって大きなプラスとなりました。 原価率はどう変化? 次に、売上原価率について、「原材料費が高くなっているのか、それとも原価率が高い商品が売れているのか」といった視点が学びとなりました。売上高が伸びた際には、原価率の変動原因を細かく見て、売上を形成する製品に基づいた戦略を立てることが重要だと感じました。また、当たり前のことではありますが、販売価格が低ければ原価率が上がる(クーポンによる安売りなどが原因)という点にも気付かされました。事業計画を達成するためには、利益を確保しつつ売上を伸ばすことが重要であると再確認しました。 取引先のP/Lって? そして、実際に取引先や競合他社のP/Lを読み解くことに挑戦したいと考えています。具体的には、営業外収益や費用がどの程度あるのか、売上原価率が企業や年度ごとにどのように変化し、何がその原因であるのかを理解し、それが戦略にどのように結びついているのかを把握したいです。また、新聞で最終利益が報じられた際に、売上総利益、営業利益、経常利益の中でどこが影響してその結果が生まれたのかを確かめたいです。 IR活用は確実? これを実践するために、11月に決算が発表された取引先企業のIR(インベスター・リレーションズ)を確認し、売上総利益、営業利益、経常利益の各利益率を同業界の平均や他社と比較することを毎週行いたいと考えています。この取組は、異なる業界である建設、エネルギー、人材業界から各1社ずつ選び、競合他社も含めた計6社を対象としています。

戦略思考入門

意思決定の極意:選ぶ勇気と捨てる技

感情とデータ、どちら? ビジネスにおける意思決定では、「捨てる(選択する)」という判断が必要なことがあります。限られた時間や資源の中で業績に貢献するための選択を行う際、感情的な理由に基づく判断は避けるべきです。「創業時から続けてきたから」「やめると処理が面倒だから」などの感情論を優先すると、業務が増え続け、効率が低下します。捨てるという判断には、定量データを参考にして指標を設定することが重要です。 定量と定性、どう? 中には「顧客とのつながり」や「担当者との関係性」などを指標にしている場面もあります。確かに、定量的なデータに基づく判断は重要です。しかし、何を具体的に取捨選択するかを決める際には、定性的な考え方も柔軟に取り入れることが有効だと感じました。すべてを定性的な考えだけで進めるのではなく、一定の根拠を持って選択肢を絞り込みつつ、関係者からの意見も取り入れながら精査することが大切だと思います。 施策の見直しは? 私たちのチームで行っている施策には、利益に対する投資対効果が出ていないものも少なくありません。人員が減り、残った社員への負担が大きくなりつつあります。中長期的な効果を見据えて進めている施策もありますが、現状では工数が増え、残業の増加やクオリティの低下が問題となっています。今回学んだ「捨てる」という概念を活用し、進行中の施策を棚卸しし、本当に今行うべきかを整理し、優先順位を再考したいと思います。 効果の測定はどう? まずは施策が生み出している利益や売上について数値的データを集めることから始めます。そして、実際にかかっている工数を把握し、投資対効果を測定します。短期的な成果を目的とする施策と中長期的な成果を目的とする施策にそれぞれ指標を設定し、優先順位を明確にし、自分のタスクに落とし込んでいくつもりです。

アカウンティング入門

P/Lから学ぶ経営のコツ

売上と利益は何を見る? 売上から原価を引いたものが利益となり、P/Lでは売上や利益に注目するとともに、他のデータと比較することでトレンドや売上高と利益のギャップなどが見えてきます。 ビジネスの核心は何? ビジネスを考える際、根幹をなすのはビジネスモデルであり、Core Valueと言えます。ビジネスモデルにはそれぞれストーリーがあり、P/Lを読む際にもその基本となる考えを頭に入れておくことが重要です。さらに、何か施策を実行する際には、Core Valueに一貫した行動を取らなければ、ビジネスモデルが崩れる危険性があります。 KPIはどう活かす? また、P/Lを意識してビジネスモデルやCore Valueを理解することは、日常業務の評価にも役立ちます。たとえば、KPIはビジネスモデルやCore Valueを反映しているか、実際に価値を生み出しているかを判断する一助となります。KPI改善のためのアクションを検討する際も、これらを踏まえた一貫性のある取り組みが求められます。 事業比較の意味は? あるケースで、2つの事業のP/Lを比較してみたところ、ある事業は利益が多いものの、売上に対する利益の割合は低く(約2.59%)、一方では利益率が高い(約2.86%)結果となりました。長期的な視点で考えると、高品質な調度品や内装を維持するためには定期的な更新が必要で、その際には特別な費用が発生する点に留意しなければなりません。前者では更新費用が比較的少なく済むと想定されるため、この条件下では後者のビジネスモデルの方が長く続く可能性があると感じました。 戦略評価はどうする? このように、P/Lを通してビジネスモデルやCore Valueを理解することは、戦略の策定や日常業務の評価において非常に重要だと実感しました。

マーケティング入門

売れる製品を見抜くための分析法の習得

イノベーション普及要因とは? イノベーションの五つの普及要因というフレームワークを通して、既存の製品やこれから開発する予定の製品について分析することで、何が売れるか、何が売れないかの要因を把握できることを学びました。また、ターゲットとするセグメントの顧客がどのような考え方をするのかを正確に理解することの重要性も学びました。 市場分析の重要性は? セグメントにおいて、自社が本当に勝てる市場なのかを分析することも重要です。ただ母数が多いだけでは意味がなく、多様化した市場の中で限られたリソースをどのように使って売上利益を最大化できるかを考える必要があります。さらに、ネーミングについても顧客が求めているものとのギャップが生じないよう注意する必要があります。 普及条件の適用方法は? 自社の製品や今後開発予定の製品を、イノベーション普及の五つの条件に照らし合わせて不足している要因を分析したいと思います。例えば、自分が担当している産業用コネクタにおいては、マーケットシェアが高いものと低いものがあります。それらを比較することで見えてくるものがあると考えます。 アジア市場での戦略は? 現在、攻めようと考えているマーケットがセグメント上正しいのか、本当に勝てる市場なのかを分析したいと考えています。具体的には、日本以外のアジア地区への拡販計画を立てているが、自社にとってそこが勝てる市場なのかをしっかりと分析したいと思います。 比較分析で見えるものは? まず、担当している製品におけるイノベーション普及の五つの条件がどのようになっているかを確認し、分析することが重要です。売れている製品と売れていない製品の比較を行います。次に、セグメント分けを行い、勝てる市場がどこなのかを改めて考え直す必要があります。

戦略思考入門

未来を描く、自分らしさの戦略

未来はどう見える? 戦略思考とは、まず未来を見据え、目指すゴールをはっきりと定めることから始まります。その後、必要な行動を厳選し、自分自身ならではの独自性を加えることで、唯一無二の戦略を構築します。明確なゴールが見えると、そこへ進むための方法や道筋が自然と浮かび上がるのです。 学びは何を伝える? 今回の学びでは、戦略におけるゴール設定の重要性と、独自性の追求がしっかりと表現されており、基本を押さえた学びが伝わってきます。今後、具体的な実践計画を盛り込むことで、より深い成果が得られるでしょう。 目標はどんな意味? また、明確な目標があれば、進むべき道が自ずと見えてきます。同時に、自分らしさを戦略に組み込む意識も大切であり、その姿勢は非常に評価できます。 具体策はどう描く? さらに思考を深めるための問いとして、まずは特定の事業分野において、具体的な目標設定とその実現に向けたステップをどう組み立てるかが挙げられます。たとえば、事業計画書を作成することが一つの有用な手段です。 また、これまでの多業界での経験を踏まえ、他と差別化するための強みを具体的に考えると、相手の思いを汲み取る力の強さが大きな強みとなります。幅広い業界での経験が、さまざまな点と点をしっかりと結びつける基盤となっているのです。 行動計画はどう? 最後に、これまでの経験を活かして具体的なアクションプランを策定し、目標に向かって着実に歩み出すことが大切です。たとえば、顧客獲得やブランディング、マーケティングの分野で活用できると考えられます。具体的な行動としては、ゴール達成の期日と売上の数値を明確にし、事業計画書の作成、同業種のリサーチ、さらにはSNSでの発信とその効果の数値管理を実施することが求められます。

クリティカルシンキング入門

新発見!分解で見える本質

イシューの意味は? 「イシュー」とは、今ここで問い直すべき核心の問題を意味し、これまで学んだ分解やロジックツリーの考え方を活用できることを実感しました。その上、手順を踏んで伝える言語化や視覚的に示す方法との連動が重要であると認識しました。 事例から何を学ぶ? ファストフード店の事例では、客の立場では実感していたものの、経営者の視点から内外環境に応じたイシューの抽出やそれに基づく施策の検討が難しく感じられました。特に、売上の分解において、平日と休日、ハンバーガーとサイド、若者とシニアといった切り口は、自分の発想にはなかったため、新たな気づきを得ることができました。 売上戦略はどう練る? この考え方は、自身が担当する売上拡大策にも活用できそうです。売上を分解し、点数や単価、カテゴリーなど、どの切り口や問題があるのかを明確にした上で、適切な打ち手を講じていくことが必要だと感じています。また、取引先の食品小売店の売上に対しても、数字の内訳をしっかりと把握し、的確な施策を提案することが求められるでしょう。 日々のスキル向上は? 分解のスキルや経験が必要だと実感しているため、日常のニュース(決算関連やキャンペーンなど)の背景を分解・整理することを意識しています。さらに、社内や取引先への売上確認や報告が月次単位で行われることから、定期的にOutlookのスケジュールにリマインダー(毎月25日朝8時)を設定するなど、日々の業務で経験値を積む計画です。 理論の実践はどうなる? 「分解(階層、変数、プロセス)、ロジックツリー(インパクトの大きいものから)、MECE(漏れやダブりなく)」といった考え方を常に意識し、業務改善に努めていきたいと考えています。

データ・アナリティクス入門

仮説と比較で読み解く数字の真実

仮説はなぜ重要? データ分析は、ただ数字を羅列するだけではなく、自分なりの仮説を立て、その仮説を検証するための手段であると再認識しました。数字を見てもただの数字遊びになってしまうため、最初に明確な仮説を設定し、その仮説に基づいて分析を進めることが大切だと感じています。 過去比較はどう読み解く? また、分析においては過去のデータとの比較が非常に重要です。たとえば、あるプロダクトの売れ行きが明確な季節変動を示している場合、過去の同時期や前年のデータと比較することで、その背景にある傾向に気づくことが可能になります。このような比較を通じて、何が影響しているのかを客観的に把握する意義を実感しました。 利用状況はどう見極め? 自社プロダクトの販売実績や機能の利用状況の可視化にも、こうしたデータ分析の手法を取り入れています。毎月、売れ行きや利用状況を分析し自分なりの考察をまとめていますが、最近は単調になりがちで、より深い洞察が求められていると感じています。たとえば、「なぜ売れているのか、なぜ売れていないのか」、「なぜ機能が使われているのか、使われていないのか」といった真因を把握するために、属性や業界別の利用状況・売上トレンドを過去データと比較して分析できるスキルを身に着けていきたいと思います。 仮説検証で何が変わる? さらに、データ分析を行う際は、まず自分なりの仮説を必ず設定することが基本です。たとえば、ある規模以上のお客様では機能利用率が高いが、規模が小さいお客様では逆の傾向があるといった仮説を最初に立てることで、その後の検証や分析がスムーズに進み、より多くの気づきを得ることができると考えています。これまで学んだ分析スキルを活用し、今後も実践的に取り組んでいきたいと思います。

アカウンティング入門

原点回帰!価値提供の軌跡

価値と対価の関係は何? ビジネスの基本は、価値を届け対価を得ることにあります。損益計算書は、提供した価値に対して得た売上と、価値を届けるためにかけた費用のバランスを把握するためのツールと言えるでしょう。 赤字の原因は何? もし赤字となる場合は、費用対効果のバランスが崩れていることを示しています。たとえ儲けが大きいことが望ましくても、コアバリューを損なわずに売上と費用のバランスを見直すためには、常に自社が提供したい価値が何であるかを振り返り、その原点に立ち返る必要があります。 提供価値はどう伝わる? 現状の売上の構成や、価値提供のためにかかっている費用を損益計算書をもとに見直すことが求められます。また、コアバリューを顧客体験として届けるためには、単に目標を達成するだけでなく、どのような価値を提供した結果として売上が立ったのか、その達成プロセスそのものが本質であり、事業の成長可能性に大きく影響すると考えます。 価値実現の進捗は? 今期の振り返り面談では、今後やりたい取り組みとしてこの点をお話する予定です。日々の業務では、単にKPIを達成することに注力するのではなく、その達成プロセスを通じて自社のコアバリューが体現されているかどうかに意識を向けます。もし体現が不足している場合は、KPIの設定がビジネスの本質からずれている可能性があるとして、定量目標が達成できなかった背景にある定性的要因をきちんとエスカレーションしなければなりません。 事業発展の鍵は? さらに、決算説明資料をもとに、今後どのように事業を発展させ、スケール化を進めることでコアバリューをより深く広く社会に届けることができるかをイメージし、それを社員登用試験でもお話したいと考えています。

戦略思考入門

真似されず輝く自社の魅力

講座受講の本当の意味は? 今回の講座を受講する理由は、経営戦略の学びが自身の業務にも深く関係している点です。特に、顧客にとって価値があり、選ばれるための差別化が重要な視点だと感じています。 差別化の本質は何? これまで「差別化をしたい、考えたい」とよく思っていましたが、具体的に深掘りする方法が分からず、また「真似されるな」と主張していたものの、真似されるものはそもそも差別化とは呼べないと気付きました。加えて、差別化を実現するにあたり自社の強みを意識する中で、真似できないソフト面が今の組織の大きな強みであると認識し、これを大切にしていきたいと考えています。 VRIOを活かす秘訣は? また、VRIOの考え方が非常にわかりやすかったため、さっそく現業務に活用したいと思います。自分の事業内容の見直しの際に、特に情報配信やイベントでの差別化の方向性を模索していたため、学んだ内容が具体的なヒントとなります。さらに、女性対象に情報配信や起業家支援を行う事業でも、企画から実施、告知、集客に至る各段階で役立つと感じました。 集客はどう取り戻す? 近年、SNSの台頭などで仕事の依頼が減少し、売上が低下しているため、改めてフレームワークを活用し、独自のサービスを打ち出す必要性を感じています。そこで、まずスタッフミーティングで集客に関する概要を伝え、各自に「なぜ集客が必要か、どのような手段が考えられるか」を宿題として考えてもらいます。 実践後に何を考える? その後、スタッフ全員で実際のワークを行い、まとめた内容を可視化して、とりあえず実践に移します。実践した後は反省点を振り返り、改善に努める予定です。具体的なテーマとしては、夏休みイベントを取り上げています。

データ・アナリティクス入門

問題解決のステップで成果を出す方法

問題解決プロセスの重要性は? 問題解決のプロセスについて学んだ内容を振り返ります。 まず、問題解決のプロセスには、以下の4つのステップがあります:What(何が問題か)、Where(どこに問題があるか)、Why(なぜ問題が起きているのか)、How(どうするのか)。この順序を守りつつ、ステップを踏んでアプローチすることが大切です。ただし、このステップは必ずしも順番通りに進むわけではなく、行ったり来たりすることがあります。 問題を定める方法とは? 最初にすべきことは、問題を定めることです。あるべき姿と現状とのギャップを把握し、数字を使って売上と予測を比較することで具体的にギャップを捉えます。そのギャップの間で現場で何が起きたのかを確認することも重要です。 フレームワークの活用法を知る 次に、問題がどこにあるのかを整理する際には、ロジックツリーやMECE(Mutually Exclusive, Collectively Exhaustive)などのフレームワークを使うと、漏れなく検討するのに有効です。 問題解決の優先順位をどうつける? 現在、サービスに対するアンケート分析を行っていますが、対象が広範囲であるために論点がバラバラになり、打ち手も行き当たりばったりになっていました。今回学んだ方法を使い、まず問題を複数洗い出し、その中で本当に解くべき問題に優先順位をつけ、チーム内で合意を得ることが必要です。そして、解くべき問題について、学んだ各ステップを踏んで考えます。 MECEとロジックツリーの実践 考える際には、MECEとロジックツリーを使ってみましょう。まず手を動かして使ってみることで、理解を進めることができるでしょう。

データ・アナリティクス入門

小さな仮説が大きな発見に

なぜデータを分ける? まずは、分析はデータを分けて整理するところから始まると感じました。各要素や性質の細部まで明確に把握してから整理することが、効果的な分析につながると実感しています。また、比較対象や基準を設け、データを比べることで意思決定を支援する効果にも大きな意義があると印象に残りました。 どこを重点分析? 動画学習では、帰還した戦闘機の被ダメージ部分とそうでない部分、さらにその他の箇所について、どの部分の分析が有用なのかという問いかけがありました。帰還しなかった戦闘機では、被ダメージの少ない部分に致命的な損傷がある可能性を想定し、その箇所を中心に分析すべきだという仮説思考を学び、これまでになかった視点を得ることができました。 データで判断する? また、データの収集や分析の目的は、それを基にした適切な意思決定にあると感じます。意思決定を円滑に進められるよう、データ分析のスキルを磨いていく必要性を強く意識するようになりました。 売上の謎は何? 売上分析においては、課題の真因を明確にするために、売上に直結する各種データをどのように収集するかが重要です。過去の実績や予算、さらに他社の数値との比較によりギャップを把握し、原因を推察して仮説を立てるプロセスは、正確な分析に寄与するというイメージが湧きました。 本質はどう捉える? 最後に、データ収集の際は、必要な要素の抽出を慎重に行うことが求められます。MECEの思考法を活用し、要素の抜け漏れを防ぐとともに、各項目に適した分析手法を検討することが大切です。データそのものの生成に注力するのではなく、本質が何かを見極め、意思決定を促す資料として仕上げることが、最も重要であると感じました。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。
AIコーチング導線バナー

「売上 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right