データ・アナリティクス入門

標準偏差と幾何平均が紡ぐ成長

どんな学びが印象的? 今回の学びで特に印象に残ったのは、「標準偏差」と「幾何平均」の2点です。 標準偏差の計算手順は? まず、標準偏差についてです。計算手順はまず平均を求め、その後、各データと平均の差を求め、差を2乗します。そして、2乗した値の平均(=分散)を算出し、その平方根を取ることで標準偏差が得られます。具体的な例では、データが3, 4, 5, 5, 8の場合、平均は5となり、各データとの差は2, 1, 0, 0, -3です。これらを2乗すると4, 1, 0, 0, 9となり、分散は2.8、標準偏差は√2.8 ≈ 1.673となります。また、Excelでは=STDEV.P(範囲)という関数を用いて計算できます。 幾何平均の計算方法は? 次に、幾何平均についてです。こちらは、最終値を初期値で割った値を計算し、期間に応じた累乗根(平方根や立方根など)を求めます。その値から1を引いたものが平均成長率となります。例として、初期値が100、最終値が209の場合、成長率合計は209 ÷ 100 = 2.09となります。2年間での成長率なので平方根を求めると√2.09 ≈ 1.45となり、1.45 - 1 = 0.45(45%)が幾何平均成長率となります。 中央値だけで評価すべき? これまでは中央値を代表値として重視してきましたが、今回の学びで、データのばらつきを示す標準偏差の重要性を改めて認識しました。例えば、AIモデルの予測精度の評価において、これまでは絶対誤差率の中央値だけを使っていましたが、標準偏差を加えることで信頼度をより的確に評価できると感じました。 AI評価はどう変わる? 実際、私が担当する不動産評価のAIモデルにおいても、最新のトレンドを反映するため定期的にアップデートを行っています。これまでは精度評価において中央値のみを用いていましたが、今回学んだ標準偏差を活用することで、モデルの精度のばらつきをより正確に把握できると理解しました。今後は、より正確な評価のために、標準偏差も加えた指標で測定していく予定です。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

データが語る学びの軌跡

どのプロセスが必要? 分析とは、データ同士を比較する行為であると捉えられます。そして、分析は仮説を立てることから始まり、目的や問いを明確にした上で、仮説設定、データ収集、そしてその仮説を検証するプロセスを踏む、いわば「プロセス×視点×アプローチ」が重要となります. どの視点が有効? 分析における視点としては、インパクト、ギャップ、トレンド、バラつき、パターンの5つが挙げられ、各々の観点からデータを多角的に検証することが求められます。一方、アプローチとしては、グラフ、数字、数式の3種類が存在し、状況に応じた手法の選択が大切です. どの代表値を使う? 数字によるアプローチでは、まずデータの中心位置を示す代表値を注視します。代表値には単純平均、加重平均、幾何平均、中央値などがあり、また、データの散らばりを示す標準偏差などを用いて、他のデータの状態を把握することが重要です。代表値についても、観点により複数の値が存在するため、適切な選定が必要です. 相関はどう読む? さらに、数式化の側面では、「欲しい結果に対して何か効いているか?」という視点で、相関関係を見いだすことができます。ただし、相関が必ずしも因果関係を示すわけではない点に留意しなければなりません. 今後はどう進む? 通常、業務においては年度別の件数や特定分野の傾向を、主に単純平均から読み取っていましたし、どのグラフで可視化するかに対して意識が十分ではなかったと感じます。しかし、今回の学習を通じて、目的を明確にし、どの視点でデータを見るべきか、どのアプローチが最適かということを、1つ1つ丁寧なステップとして考える重要性を学びました。また、相手に説明する際には、ビジュアルを活用することで情報がより伝わりやすくなることも実感しました. 次に何を分析? 今後は、何を分析したいのか、何を知りたいのかを明確にした上で、「代表値」「バラつき」「数式化」の各定義や使用すべき場面を理解し、目的に沿った手法を適切に選択しながら分析を進めていきたいと思います.

データ・アナリティクス入門

ギャップに迫る!本質解明の軌跡

計画と実績はどう違う? 年間利益構造の表を見ていると、大きな数字や計画にない項目に目がいきがちですが、計画値と実績値のギャップに注目し、どの項目がどれだけ影響しているのかを把握することが重要だと感じました。 何を見落としている? また、これまで主体的にHowばかりを考えていた自分に気づかされました。さまざまなアイディアが出やすいからこそ、関係者全員が納得するHowを見出すためには、最初に【What】問題の明確化、次に【Where】問題箇所の特定、そして【Why】原因の分析、最後に【How】解決策の立案というステップを確実に踏むことが大切だと理解しました。 理想と現実は何が違う? さらに、業務でKPIを設定する際に、全国平均に頼るだけでなく、「あるべき姿」と「ありたい姿」という二つの視点の違いに気づく機会がありました。現状の分析で「あるべき姿」に留まるだけではなく、自分自身が描く理想の「ありたい姿」まで意識してKPIに反映させたいと強く感じました。 KPI改善は何から? 健康経営やエンゲージメント向上、女性活躍推進、男性育休推進といった分野では、現状分析、KPI設定、課題解決、施策の立案・実行を数値に基づいて進めることが求められます。いずれの場面でも、【What】、【Where】、【Why】の各視点で問題を正確に捉えた上で、【How】の提案を行うことが不可欠と実感しています。 具体的には、健康経営におけるKPIの見直しとして、まず現在設定しているKPIの現状を確認し、数値やグラフでギャップを明らかにしました。次に、相関するKPIの状況を把握し、どの指標が課題となっているかを明確にしました。加えて、多くのKPIの中から、進捗が思うように進んでいないものや他の進捗を阻むものを特定し、専門家の視点を参考にしながら原因を分析しました。その上で、現行のKPIが適切かどうかを再検証し、「あるべき姿」と「ありたい姿」を改めて確認しました。最後に、課題の原因に対して具体的な解決策を検討し、実行可能な施策へと落とし込むプロセスを実践しました。

リーダーシップ・キャリアビジョン入門

振り返りで見つける自分の道

過干渉を避けるには? まず、実行段階においては、過干渉にならないことが重要です。想定した結果や成果物がしっかりとできているかを確認し、個人を責めたり犯人探しをするのではなく、構造的な問題を把握するために振り返りを行います。忙しいという理由で振り返りを省略するのはもったいなく、うまくいった点についても「なぜうまくいったのか」を検証することが大切です。 なぜ動機は異なる? また、個々人のモチベーションは異なります。マズローの欲求5段階説や、ある理論、さらに衛生理論など、さまざまな理論を踏まえながら動機付けについて考えることができます。ただし、どの理論にも完全に当てはまるわけではない点に注意しなければなりません。 どうして信頼を築く? 日常の業務の中では、尊重、目標設定、フィードバック、そして信頼関係の構築が欠かせません。たとえば、チャットで「質問よろしいでしょうか?」といった連絡があった場合、まずは「連絡ありがとう」や「質問ありがとう」と返すことで、相手への尊重と信頼関係の構築が実践できると感じています。 どうやって動機把握? また、進捗や成果が思わしくないメンバーについては、それぞれの動機付けの要因を考え、日頃からのコミュニケーションを大切にする必要があります。一方、優秀で自立しているメンバーであっても、モチベーションを見極め、課題がないかやさらなる成長のための視点でコミュニケーションを密に取ることが求められます。 どうして振り返り習慣? こうした取り組みを効果的に進めるため、まずは自分自身の中で、週単位、月単位、あるいはプロジェクト単位での振り返りを習慣化することが望まれます。さらに、週に一度、数十分程度でもフィードバックや振り返りの場を設けることで、目標修正の必要性を確認し、尊重や信頼の構築に繋げることができると考えています。その際、何がうまくいき、何がうまくいかなかったのか、またその理由について、メンバー自身の言葉で考える機会を設け、傾聴の姿勢をもって意見を引き出すことが重要です。

データ・アナリティクス入門

仮説検証で見つける成長のヒント

どう仮説を練る? 前職で教えられた問題解決の手法は、実践する機会が十分にありませんでした。仮説を立てる際、まずは現状把握が最も重要であることを再認識しています。一つの仮説に直感的にたどり着くことはありますが、そこに固執せず、ほかの可能性も考慮した複数の仮説を検討することが、根拠のある仮説を生み出すポイントだと感じています。 検証の切り口は? 動画の一例で「仮説と検証を繰り返す」という考え方が大変印象に残りました。これまでにも同様の手法を試みたことはありましたが、せいぜい数回で終わってしまい、検証の繰り返しが十分ではありませんでした。そこで、自分自身の検証と例で示された検証方法との違い、たとえばアプローチの切り口などについて、改めて考えてみることにしました。 枠組みの意外性は? フレームワークに基づいて検証する方法も、抜け漏れのない仮説を構築できる可能性を秘めています。フレームワークを利用することで、新たな発想や類推が生まれることが期待できる一方、自由な発想では偏りが生じやすく、適切な仮説検証が難しいと感じています。 時間がかかる理由は? また、他の社員と比べて明らかに時間を要している業務があります。正直なところ、その業務が自分に合っていない、あるいは心理的に好ましくないという言い訳をしてしまっていました。しかし、他者との比較を通じて何が原因なのかを見極め、行動に入る前の準備段階に問題がないか、あるいは結論から逆算したアプローチができているかを、仮説の検証とシミュレーションで実際に検証しているところです。 取り組みは十分? これらの対策は現在進行中です。現状を正確に把握し、問題点を見極めた上で、重要な局面で目指すべき状態や、そもそもやるべきことが実施できているかを確認しています。業務は忙しく時間的制約もありますが、抜け漏れがないか、逆算して工程を検証する取り組みを並行して行うことで、苦手な業務の改善につなげたいと考えています。もしうまくいかなかった場合は、さらなる仮説を立てて改善に取り組んでいくつもりです。

リーダーシップ・キャリアビジョン入門

聞く力が変える職場の未来

本音はどう引き出す? メンバーとの関係性やモチベーション向上のために必要なことが、少しずつ理解できてきたと感じます。ひとりひとりの本音を引き出すためには、まずコミュニケーションを重ね、相手の内面に寄り添う姿勢が大切だと思います。 実行結果を見直す? 実行と結果の振り返りにおいては、まずメンバーに執行責任の自覚を促し、過干渉にならないよう注意する必要があります。計画通りに業務が進み、成果が出ているかを確認するとともに、予期せぬ事態や大きな変化がないかを定期的に見直すことが求められます。万が一不測の事態が発生した場合は、状況の収拾を最優先し、その後、リーダー自身の見落としや構造的な問題を認識し、具体的な改善策を検討することが重要です。 フィードバックは適切? また、効果的なフィードバックを行うためには、メンバーが自己の業務過程と学びを言語化できるよう働きかけ、具体的な事実に基づいて評価することが必要です。良い点と改善すべき点の双方を明確に伝え、改善策は具体的な行動計画として示すことで、次の課題へと繋げることができると感じています。 動機の理解は十分? 加えて、モチベーションは人によって異なり、社会的・金銭的・自己実現といった様々な動機があります。理論的なフレームワークを活用しながら、各メンバーの内面にある動機を理解し、個々に合ったインセンティブを提供していくことが、全体のモチベーション向上につながると考えています。 1on1はどう進める? 会社から積極的な1on1ミーティングの実施を促されている中で、何を伝え、どのように話を進めるか悩んでいましたが、今回の学びを通じてまずは相手の話に耳を傾けることの重要性に気づきました。聞く姿勢を徹底することで、メンバーが自身の考えを整理し、賛同のもと業務を任せられる環境を整えたいと思います。今後は定期的な1on1や適時のフィードバックを通じて、相手の動機を素早く把握し、エンパワーメントの視点から振り返りと改善、そして次なる課題への取り組みを進めていくつもりです。

アカウンティング入門

無借金経営の光と影を探る

B/Sから見える経営の違いは? B/Sから、資金の調達方法や運用方法によりビジネスモデルの違いが浮き彫りになることを学びました。例えば、無借金経営の場合、借入金や利息の支払いがないため一定の安心感はあるものの、十分な利益が上がらないと資金繰りが悪化し、次の成長戦略への投資が制限されるリスクがあると理解しました。(具体例として、広告宣伝費やメニュー開発費などが挙げられます。) 営業サイクルはどう理解? また、営業サイクルについては、「仕入→製造→在庫→販売→回収」という一連の流れを再認識し、企業経営における基礎としての重要性を感じました。さらに、業種によって流動資産と固定資産の比率が異なるなど、企業ごとのビジネスモデルに基づく資産の配分の違いも理解できました。 B/Sの違いをどう捉える? 総評として、B/Sを通じた資金調達と運用の違いの理解は非常に有益であり、無借金経営のメリットとデメリットを考慮する視点が印象的でした。また、異なる業種間でのB/Sの違いを具体的に考えることで、ビジネスモデルへの理解が一層深まったと感じています。 無借金経営のリスクは? 今後は、無借金経営における成長戦略の制約をどのようにリスク緩和していくか、また、流動資産と固定資産の割合がビジネスにどのような影響を与えているかについて、さらに詳細な分析を進めたいと考えています。 新規事業計画をどう策定? 新規事業戦略においては、コストや利益構造、資金調達方法について仮説を立て、しっかりとした事業計画を策定することが重要です。どこに資金を投入し、どこで費用を抑えるべきかを明確にし、場合によっては事業構造の見直しや撤退も検討する必要があります。 収益性向上の対策は? まずは現状の把握を行い、その上でコストや利益構造の見直しを実施し、収益性の高いビジネスモデルの構築を目指します。具体的には、ステークホルダーとの業務分担や売上分配率の調整、社内のマンパワーと外注費のバランス、さらにはスキームや手数料の見直しを、今期中に実行する計画です。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

リーダーシップ・キャリアビジョン入門

職場での承認欲求を満たす秘訣

動機付けでどう伝える? モチベーションを高めるための動機付けは、一人ひとり異なることや、欲求の段階、環境によって対策が異なることを学びました。動機付け・衛生理論を活用して、それぞれの不満の要因を把握しつつ、部下に対して適切に接することが大切だと感じました。また、部下の心理状況を常にマズローの欲求5段階を意識しながら、1on1ミーティングを行うと効果的であると気づきました。特に、承認欲求を満たし、モチベーションを高めるためには、フィードバックの重要性を再認識しました。 内省と実験でどう進める? 私は、具体的経験→内省的観察→抽象的概念化→能動的実験というプロセスを意識し、部下に言語化させるよう働きかけたいと考えています。このプロセスに加えて、労いや感謝を言語化することを重視し、部下の相談や報告に向き合うことで、彼らの成長と自律的行動を促進しようと思います。営業面での時間の制約がある中で、結果に繋がる最短距離を模索するあまり、経験に偏った解を求めがちであったことを反省し、部下育成や承認欲求の機会を失っていたことを再認識しました。 承認欲求、どう満たす? 承認欲求を満たすために以下の行動を意識しています。 - 日々の相談や報告の場面では、活動への労いと感謝の言葉を伝え合うことで、承認欲求を満たす機会として有効に活用したいと考えています。 - ミーティングの場面では、活動や結果報告の際に労いとともに良かった点や反省点を言語化させて、多く振り返りの機会を持たせるようにし、褒める場面と成長を促す機会を習慣化していきます。朝礼や全体会議では、プロジェクトの進捗を共有し、各自の担当業務がどのように役立っているかを共感できる場に改善していきます。 - 1on1ミーティングでは、動機付け・衛生理論から不満と感じていることを探り、マズローの欲求5段階を基に各個人の欲求がどの段階にあるのかを把握する場として活用したいと考えています。そのうえで、具体的な活動の振り返りや自ら成長したいという意欲を後押ししていきたいです。

データ・アナリティクス入門

分析のアプローチで見えた新たな視点

分析とは何を指す? 分析とは「比較」のことを指します。現状を詳細に比較したり、物事を比較することで、解像度の高い理解や把握が得られます。 グラフや数値の算出方法を理解 今回の学習を通じて、具体的な分析アプローチとしてグラフや数値の算出方法について理解しました。データを算出する際には、代表的な数値(代表値)とデータの散らばり(分布)に分け、それぞれに具体的な手法が用いられます。代表値の例としては、単純平均、加重平均、幾何平均、中央値がありますが、特に幾何平均を用いた売り上げ予測の立て方が印象に残りました。また、分布の例としては2SDルールが紹介され、大枠の範囲を考慮した上で平均値を予想する方法が理解できました。 仕事における分析意識の向上をどう図る? ①分析のアプローチに対する仕事の意識 「分析 = プロセス × 視点 × アプローチ」という基本的な考え方を念頭に置き、これらに漏れがないように資料を作成したり、発言するといった意識を持ち続けます。 ②分析のアプローチに対する業務の行動 現状では単純平均を用いて比較することが多いですが、今後は分布やグラフを用いることで新たな気づきを得られるように努めます。 アプローチ方法をどう定着させる? ⓪分析全体の把握およびアプローチ方法の定着化 学習した「分析 = プロセス × 視点 × アプローチ」について、自分の言葉でまとめました。まずは用語や算出方法を含めて暗記し、アプローチ方法を定着させます。 SNS戦略での分析の改善策は? ①SNS戦略での分析の実施 現状では数値を取って把握することが主体で、十分な分析ができていません。今後は、定義に基づいた分析を実施し、比較が必要な場合には代表値や分布を用いて進めます。 データ分析の評価をどう行う? ②データ分析に関する評価 業務上、データから戦略や仮説を立てることが多いため、データに対して視点を持ったりアプローチを探したりすることで、新たな気づきを見つけ、それを共有します。

マーケティング入門

見えないニーズ発見の秘訣

顧客の視点はどう? 商売の基本は、常に顧客の視点に立ち、ニーズに応えることだと改めて感じました。一般的なニーズはどこにでもあるため、競合他社との差別化が難しい面があります。しかし、潜在的なニーズをしっかりと追及し、そこに応えることで、競合が少なく大きな成果につながる可能性が広がります。つまり、「潜在的ニーズを探る」という姿勢を意識的に持つことが重要です。 自社の強みは何? また、自社の強みと顧客の潜在的ニーズを掛け合わせることが、最も効果的な戦略だと考えています。自社の強みが何であるかを見極めた上で、それを活かした施策を考えることで、より大きな成果を上げることができるでしょう。そして、顧客が抱える「痛み」や「困りごと」に対して具体的な価値(ゲイン)を提供することも不可欠です。これは、顧客だけでなく自分自身の体験を振り返り、課題解決のヒントを得るための大切な視点です。 現場のニーズは? 現場においては、最も顧客に近い位置で、彼らの潜在的なニーズを把握することが必要です。たとえば、売上対策としては、レジや売場、実際の問い合わせやクレームの中から隠れた要求を見出すことが挙げられます。一方で経費対策としては、従業員の抱える問題や困りごとをヒアリングし、大局的な解決策に結びつけることが求められます。私自身、以前から顧客の潜在的な要求について記録し、対応策を考えてきましたが、本部へ伝える際のハードルが高いと感じることもしばしばありました。新入社員でも顧客目線で提案や企画ができる仕組みを整えることは、皆にとって貴重な訓練となり、後の展開に大きな意味を持つと確信しています。 従業員の課題は? 今後、従業員の問題を把握する際には、表面的な課題だけでなく、潜在的なニーズにも目を向けるようにしたいと感じています。皆さんは潜在的なニーズを探るために、どのような調査や取り組みを行っていますか?私の現場では外部との連携が少なく、視点が一方に偏りがちであることもあるため、他の事例やアイデアを参考にしていきたいと思っています。

「把握」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right