クリティカルシンキング入門

数字の捉え方を変える新発見への旅

数字の切り口をどう捉える? 数字の切り口には複数のパターンがあり、その見え方は切り方次第で変わるということがよく理解できました。しかし、切り口によっては解釈を誤る可能性もあるため、それをどのように防ぐかが重要なポイントだと感じました。 フレームワーク活用のヒントは? 分解の方法として3つのフレームワークが存在し、特にプロセスで切り分ける方法は今後意識して取り入れたいと思います。これらが効果を発揮するためには、ある程度の基礎知識やMECEといった考え方が必要であり、体系的に知識やスキルを習得する必要性を感じました。 管理会計で何を見極める? 現在の職務において、既存事業の理解には、売上構成などを管理会計的に分析することが重要だと考えています。ここでGailという手法が活用できると思いました。最初に事業を分解して特性を理解し、その特性から課題を洗い出していきたいと考えています。そして、今後の社会情勢と照らし合わせて事業の方向性を整理したいです。 整理と議論はどう進める? まずは既存事業部の情報収集を始め、その一方で管理会計の知識を身につけ、管理会計としてのプロセスを整理し、フォーマットを作成してみたいと思います。これにより自身の事業理解を深め、経験者とディスカッションを行い、現状の事業課題や今後の事業戦略に反映したいと考えています。

クリティカルシンキング入門

頭の使い方を変える挑戦記

頭の使い方、間違ってる? 印象に残ったことが二つあります。一つ目は、マイホーム購入者の検討演習を通じて、自分の「頭の使い方」が効率的でなく、偏りも防げていないことを痛感したことです。ただ思いつくままに関連事項を拾い上げていたため、時間がかかり、抜け漏れも生じていました。これまでこうした頭の使い方をしていたことが、仕事のうまくいかない理由だったのかもしれません。この講座を通して、正しい「頭の使い方」を身につけたいと思います。 三つの視、理解してる? 二つ目は、「三つの視」で考えることです。これまで特に意識していなかったため、企画の提案や上司への報告で抜け漏れを指摘されてきたのだと実感しました。このフレームを利用し、建設的な議論や意見ができるようになりたいと思います。 レポート視点、足りる? お客様に経営レポートを報告する際には、三つの視を利用し、お客様視点、投資家視点、他社の類似事例について具体的に価値ある情報を提供できるように心がけたいと思います。 視座整理、できてる? まずは、視座・視点・視野で考える習慣をつけるために、スプレッドシートにフレームワークの表を作成しようと思います。自分の業務に合わせた視座・視点・視野を具体的な言葉に落とし込み、伝えるストーリーも考えながら、お客様に経営レポートを報告してみようと思います。

リーダーシップ・キャリアビジョン入門

リーダー経験がなくてもできる工夫

リーダーシップには何が必要? リーダーとして考慮すべき点は、自分自身の感覚に頼ることが多かったと感じました。しかし、事業とメンバーの2軸から判断し、環境やメンバーの状況に応じた適切な声掛け方法を考えるフレームワークは、かかわり方を検討するうえで最低限必要な内容であると認識しました。もし、事業やメンバーの理解において知識が不足していると感じた場合は、しっかりとキャッチアップを行うべきだと考えています。 メンバーを動かすには? 私自身はリーダーではないのですが、メンバーに動いてもらいたいときに躊躇してしまうことがあります。そこで、事業とメンバーの2軸から考慮し、環境とメンバーの状況に応じた声掛けの方法を工夫することで、自信をもって依頼できるようになりたいと考えています。今週はその考え方を意識し、1週間メンバーとのやり取りを行います。これにより、自分のクセや改善点に気づき、改善の機会にしたいと思います。 目標設定と役割分担における課題 具体的には、メンバーに動いてもらうためには、ある程度指示型に近い対応が必要だと思いました。私は上長ではないため直接的な指示はできませんが、お願いしたい内容を明確に文書化し、それについて議論する必要があると考えています。それは、現在の環境では目標が不明確で、メンバー間の役割分担に関するコンフリクトが多いからです。

戦略思考入門

目的を追求するための問い直しの力

手段にとらわれないゴール設定は? ゴール設定の重要性は理解しているものの、気がつけば手段の巧拙に目を奪われてしまうことがあると再認識しました。最短の道が迂回路である場合も多く、遠回りに見える近道を見つけるのは難しいですが、手段の技術を磨きたいと感じています。 生成AIにおける限界とは? また、雑談の中で生成AIからうまく回答を引き出せないという話を聞くことがあり、質問力や言語化能力の難しさを改めて感じました。万能に見える生成AIにも限界があると理解し、仕事で生成AIを提案する際には、この点にもう少し配慮すべきだと感じています。 目的の抽象化はどう深掘りする? 目的には抽象化の階層があります。例えば、業務効率を上げるのは利益率を上げることかもしれません。業務効率が難しい場合、顧客回転率を上げるといった他の手段が費用対効果が高いかもしれないと考えています。このような目的の深掘りは意外と軽視されがちで、改めて意識することが大切だと思いました。 「So what」の問い直しの重要性? 目的を確認する際には、「So what」を1、2回ではなく、3〜5回問い直す習慣をつけるよう心がけたいです。これにより、より本質的な目的に到達でき、他の手段を広範な選択肢の中から見つけ出せるのではないかと考えています。

データ・アナリティクス入門

ファネル分析で顧客行動を最適化する方法

ファネル分析の重要性とは? マーケティング分野での業務経験があるため、比較的知っていることが多かったですが、ファネル分析において顧客の行動プロセスを適切に設定する必要性を改めて認識しました。また、プロセス×ウォーターフォールチャートはあまり使っていなかったので、今後活用してみたいと思います。 ABテストの基本と注意点は? 以下、授業メモです。 ◆ABテスト - ABテストは1要素ずつ行います。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 ◆ファネル分析 - ユーザーの利用段階ごとに、どの段階でユーザーが離脱しているのかを可視化します。 - プロセス×ウオーターフォールチャートを適切に活用します。 - 顧客の行動プロセスを適切に設定することが重要です。 GA4での課題解決にどう取り組む? GA4でのファネル分析を新たに作成する際には、顧客の行動プロセスを意識します。また、プロセス×ウオーターフォールチャートを適切に活用し、ABテストもページスピードが低下するリスクを考慮しつつ活用を検討します。 ちょうど製品サイトのリニューアルを進めており、GA4の設定も見直す予定です。顧客の行動プロセスを意識したファネル分析を行い、原因探索が適切に行えるようにします。また、見出した原因に基づく改善にはABテストを活用します。

クリティカルシンキング入門

グラフで導く未来へのヒント

グラフで特徴は見える? 数字データの特徴を把握するためには、グラフ化して可視化することが効果的です。グラフにする際は、さまざまな切り口や区間を工夫し、どのような特徴に注目すべきかを見極める方法を検討します。時間がある場合は、手を動かして実際にいろいろ試してみることが大切です。 MECEの活用法は? また、データを漏れなく重複なく層別するためには、MECEの考え方が必要不可欠です。層別の方法としては、大きく分けて三種類の考え方があります。ひとつは総数を単に足し算で分割する方法、ひとつは単価と人数などを掛け合わせる方法、そしてひとつはプロセスに基づいて分割する方法です。 リスク特定はどうする? たとえば、熱中症を減らすための社内教育に取り組む場合、年齢、性別、部署などで層別を行い、熱中症のリスクが高いグループを特定することができます。また、熱中症がどのようなタイミングや場所、状況で発生しているかを分析することで、どのような対応策が必要かが明確になります。 対策整理は進んでる? このような考え方をもとに、5月中に昨年のデータを活用して分析を進め、夏に向けた対策の重点箇所や具体的な内容を整理していきたいと考えています。悩む時間をなるべく減らし、MECEを意識しながらさまざまな角度から分解し、新たな傾向を見出す手法を実践していきます。

クリティカルシンキング入門

データが導く採用成功法則

いつデータは成果に? 十分なデータを蓄積することが、正確な現状把握と適切な問いの設定につながるという点が非常に印象的でした。日々あらゆるデータを収集し、いつ何に対して答えを出すべきかを意識することが問題解決の基本であると再認識しました。 ROI考慮の意義は? また、解決策を検討する際には、ただ増やすのではなく費用対効果(ROI)も十分に考慮すべきだという点も学びました。特定の業務を増やすことがオペレーションコストの増加や問題の複雑化につながることがあるため、必要に応じて削減する視点も取り入れることが大切だと感じます。さまざまな角度から分析することで、より有効な対策を講じる可能性が広がるとも思います。 採用戦略の真髄は? 私の会社では現在、採用活動の強化に取り組んでおります。今回学んだ内容は、採用数の増加に向けた戦略に役立つと感じました。例えば、時期別の応募者数を分析し、各流入経路の割合からボトルネックを明確にすることで、仮説に基づいた具体的な対策を講じ、採用数の向上を目指したいと考えています。 PDCAで何が変わる? この学びを整理した上で、抽象度の高い問題解決が求められる業務にも積極的に挑戦していきたいです。PDCAサイクルを何度も回すことで、立てる問いの質が向上し、より良い成果につながると信じています。

データ・アナリティクス入門

複数仮説で切り開く学びの道

仮説はどう組み立てる? 仮説を考える際、3Cや4Pなどのフレームワークを活用することで、複数の仮説を網羅的に立てる手法に改めて気づかされました。これまでマーケティングのツールとしてしか意識していなかった考え方も、整理のための有効な手段となることを実感しました。 日常業務で仮説考察は? また、日々の業務の中で仮説を考え続けることにより、自分自身の業務への向き合い方を変えていきたいと考えています。 新サービスの評価はどう? 新サービスの提供時には、仮説を一つだけ立てた結果、分析や報告の内容が浅くなってしまい、納得感に欠ける部分があったと感じました。頭の中にはもっと考慮すべき点があったにもかかわらず、十分に明文化できなかったため、結果として不十分なものになってしまいました。 再挑戦の決意は? この現状を踏まえて、改めて複数の仮説を考え直し、分析と報告を再度やり直す方向で進めていこうと考えています。 案件分析の進め方は? 現在、2件の案件で分析が必要とされています。1件目は、半年前に提供したサービスの展開状況と今後の展開について、2件目は1年前に想定したサービス利用状況を再度確認する業務です。各案件とも、現状のデータを収集し、フレームワークを用いて仮説を立て、過去の想定と現状との違いを明確にする形で分析を実施する予定です。

クリティカルシンキング入門

振り返りで学びを深める方法

目的は明確ですか? データを扱う際には、目的を明確にし、それにふさわしい形で情報を伝えることが重要です。このことは、相手に何を伝えたいのかを考える際に非常に役立ちます。また、目的に立ち返る姿勢も欠かせないと感じました。 良い文章の秘訣は? 良い文章とは、しっかりと目的を把握し、読み手の立場を理解し、内容がまとまっていることに加え、読んでもらえる魅力があることです。この考えをもとに文章を書くことが求められるでしょう。 グラフの選び方は? 例えば、製品の売上データを使用した顧客への活動プランを作成する際は、どの形式のグラフがデータを分かりやすく示せるかを考えます。また、スライド作成においては、強調したい部分に工夫を凝らし、フォントの変更やアイコンの適切な利用を心掛けます。 相手を意識できる? 講演会の企画書においては、その企画書を読む相手が誰なのか(例えば、依頼する医師なのか、社内向けのプレゼン用なのか)を意識し、目的が伝わる文を作成します。 行動はどう伝える? さらに、会議の議事録を作成する際には、相手にどのような行動を期待するのか、そしてどうすれば読んでもらえるかを考慮して記録します。 メールの狙いは? また、社内メールや医師へのアポイントメールでは、目的を明確にし、タイトルにも趣向を凝らすことが肝心です。

リーダーシップ・キャリアビジョン入門

フィードバックの新発見と実践する力

フィードバックロールプレイの発見 集合講座でのフィードバックロールプレイは、ポジティブな点だけでなく、ネガティブな事柄も伝える内容となっており、新鮮で多くの発見がありました。特に、マイナスのことを伝えるロールプレイは初めての経験だったため、頭を使いながらの学習となりました。また、相手がその期の活躍をどのように捉えているかをまず聞くことの重要性を改めて認識しました。 低評価メンバーへのアプローチ 私のチームにはプロフィット目標への意識が低く、評価が低迷しているメンバーがいます。まず、そのメンバーに自身の活動を振り返ってもらい、それを一緒に客観的に評価することで、最終的な評価を伝えられるようにアプローチを変えていきたいと思います。 フィードバックの機会をどう活用する? 9月末から10月初めにかけて、上期の評価をフィードバックする機会があります。この際には、各目標に対する計画と行動、その結果と成果を定量的かつ定性的に振り返り、一緒に改善点を考える時間を持ちたいと思います。評価は評価として伝えながら、次へとつながる改善点を一緒に見つけることを目指します。 新任リーダー研修で継続的に学ぶには? さらに、新任リーダー研修のプログラムにこのロールプレイを組み込み、研修の一環としてフィードバック練習を続けられるようにしたいと考えています。

クリティカルシンキング入門

数字の楽しさと効果的な使い方発見!

数値をどう分解する? 数値を分解することの楽しさが増し、明確に理解できるようになりました。また、分解したデータを表にしてわかりやすく伝える重要性も実感しました。分解する際には、MECE(モレなく・ダブりなく)や層別、変数別、プロセス別などのフレームを意識することが大切です。 新たな知識をどう活用する? この知識は、来期のプラン作成や今年の成果分析、自店舗の顧客傾向を把握する際に役立ちます。例えば、店舗のPLを分析する際や、与えられた時間内に業務が終わらない時にプロセスを分解することで、問題点を特定することができます。また、チームメンバーに特定のカテゴリーで売上を伸ばすことをコミットする際も、各店舗の傾向を商品で分解して機会点を見える化することで、目標設定やプランニングがスムーズに行えます。 苦手意識をどう克服する? これまで数字の分解に対して苦手意識があり、必要最低限にとどめていた部分もありましたが、今回の学びを通じて積極的に数値を分解する経験を積みたいと思います。直近では来期のチームプランを作成するため、今期の成果を分解して強みや機会点を明確にし、チームメンバーが視覚的にわかりやすい資料を作成する予定です。また、顧客調査の結果をMECEを意識して分解することで、各店の機会点を把握し、チームメンバーに共有することも計画しています。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

「意識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right