戦略思考入門

戦略で切り拓く挑戦の道

戦略と戦術の違いは? 戦略とは、目的達成のための方向性を定めるものであり、戦術はその戦略を実行する具体的な手段や行動計画です。戦略的思考とは、目標を明確に設定し、最短・最速で到達するために必要な行動を取捨選択して最適な道のりを描く方法です。どの道を進むにしても障害は存在するため、それらを乗り越えるためには独自性が重要です。リソースが限られている中で、やるべきことと不要なことを明確に分けることで、最小限のリソースで目標に達することが可能となります。 中期戦略の見直しは? 事業中期戦略策定の業務においては、以下の三点に具体的に取り組んでいます。まず、事業課題の抽出とゴール設定について、現状のゴールが単なる方向性にとどまっているため、より具体的な目標に落とし込む必要があります。次に、実施すべきこととそうでないことを取捨選択しているものの、不要な活動をやめる理由が十分に説明されていないため、メンバーの納得が得られていないと感じています。ここは戦略的思考に立ち返り、再検討する必要があります。最後に、重要な要素である独自性についても、自社事業における整理が不十分であるため、再度見直すことが求められます。

戦略思考入門

店舗戦略に効く規模経済の極意

規模効果の見極めは? 規模の経済性に関するケースを通じて、具体的な状況下でその有効性を判断する際には、自分のビジネスの特性や置かれている環境、さらに利用するビジネスフレームワークを十分に理解することが重要だと学びました。十分な理解なく実行に移すと、誤った判断をしてしまう危険性があるため、現状にどの法則が適用できるのかを見極め、具体的なフレームワークと比較しながら判断する必要があります。 店舗計画の判断は? また、自分が担当する店舗で商品を計画する場合、単に利益が出ない、あるいはコストがかかるといった理由だけで製造量や発注量を減らしたり、品揃えを削減したりすると、その商品を求めて来店している顧客の支持を失い、店舗全体の利便性が低下して客数が減ってしまう恐れがあります。 品揃えの影響は? そのため、品揃えを検討する際には、各商品分類の欠落がないかどうかや、販売実績が低下して消費者の来店に影響を与えていないかを見極める視点が必要です。さらに、公開されているPOSデータでリピート率の高い商品や、自店舗が所在するエリアごとの傾向も参考にしながら、より実践的な判断を行っていきたいと考えています。

クリティカルシンキング入門

正しいイシューが未来を切り開く

イシュー設定の正しさは? イシューの立て方は、その後に考えるべき内容や出てくる回答に大きな影響を及ぼします。限られた情報を根拠だけに頼り施策を考えることは危険であり、正確なイシュー設定が求められます。正しいイシュー設定を行うには、現状を正確に把握しつつ、視野や視点を柔軟に変えながら検討する必要があります。 協働時の意見ズレはどうなる? また、顧客や上位者と協働する中で、意見のズレが生じることは避けられません。たとえ個別具体の解決策を提示したとしても、そもそもの課題認識やイシュー設定に誤りがあれば議論が進展しません。そのため、まずは現状の確認と正確なイシュー設定をしっかりと行い、関係者間で内容に合意した上で、具体的な課題や施策を検討するファシリテーションを心がけることが重要です。 セルフチェックは意味ある? 資料作成の際には、「そもそものイシューは何なのか?検討する必要があるのか?」というセルフチェック項目を追加します。また、日々活用している生成AIにもこの点を伝え、イシューが不明確な場合にはこちらからの指摘を求めなくてもフィードバックを受けられるような仕組みを講じたいと考えています。

クリティカルシンキング入門

データ分析で見つける新しい視点

データ加工の効果的な手法とは? データ加工の手法として、合計や割合を算出するための新しい列を加えることで、傾向や特徴を明確に把握できるという利点があります。また、これをグラフ化することも効果的です。 切り口次第で変わるデータ分析 データの切り口次第で傾向や特徴は変化します。そのため、どの切り口でデータを分けるかをしっかり考えることが重要です。さらに、グラフを活用することで、分析結果を視覚的に伝達しやすくなります。 広い視点で進めるデータ分析 データ分析を行う際には、When、Who、Howといった複数の切り口からデータを分解し、分析を進める必要があります。一つの切り口に頼らず、複数の視点から考えることで、より深い分析結果を得られると考えられます。 顧客増加へのデータ分析アプローチ 顧客を増やすためのデータ分析では、これらの手法が役立ちます。データ加工や分け方に基づいた分析結果をグラフで示すことで、発表時に結果を納得してもらいやすくなるでしょう。 新たな知見をどう活かすか? 今回学んだ知見をデータ分析に活かし、様々な切り口からの付加価値のある分析を目指したいと思います。

データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

クリティカルシンキング入門

クリティカルシンキングで提案力が向上!

どちらの手法が最適? 物事を考える際には、帰納法と演繹法というアプローチがあります。この両方を使いこなすことで、片方のみを利用する場合に比べて、より良い結果を得られると感じました。 視点はどれが効果的? ロジックツリーを描きながら、具体と抽象の視点や鳥の眼、虫の眼、さらには主観と客観を何度も行き来して思考することが重要だと捉えています。 提案の質はどう向上? 日々の顧客への提案を作り込む際に、意識的にクリティカルシンキングを取り入れることで、提案の質を向上させることができそうです。そして、クリティカルシンキングによって、的外れな提案を大幅に減らせる可能性があると考えました。 実践で何を修正? 早速、日々の提案や企画業務にクリティカルシンキングを実践的に取り入れることにしました。今日の商談資料を見直した際に、修正が必要な点を発見しました。 コミュニケーション改善は? 加えて、プライベートでも他者とのコミュニケーションにおいて、意識的にクリティカルシンキングを取り入れていくつもりです。これが無意識にできるレベルまで定着させることを目指したいと思います。

クリティカルシンキング入門

チームが一つに!新プロジェクト成功の鍵とは

本質をどう捉える? 考えには様々な癖があると認識することの重要性を学びました。特に現在のプロジェクトにおいて、それを深く理解できました。私たちは全員が初めての経験となるプロジェクトをクライアントに提案する場面に直面しています。その際、どこがクライアントにとっての利点となるのかを議論するためには、各自の考えや方向性をしっかりと設定しておく必要があります。 提案はどこから始まる? 今取り組んでいる仕事では、誰も経験のない内容を提案しなくてはなりません。この状況では、クライアントが何をメリットと感じるか、提案をどう承諾してもらうかをもっと深く議論するべきだと感じました。そのためには、チーム全員の考え方や方向性をきちんと決めてからスタートするほうが良いと考えています。 どの方向で進む? 本日、そのプロジェクトについて実際に話し合いを行いましたが、多くの点で意見が平行線を辿りました。そこで、まずはどの方向で考えて進めるべきか、もう一度確認する必要があると感じています。来週には、チーム全体で再び意識を一つにし、再来週には効果的な提案ができるようにスケジュールを組み立てていきたいと思います。

データ・アナリティクス入門

営業成績アップのカギは仮説立てにあり!

仮説を立てる重要性とは? 原因を見つけるためには、仮説を立ててデータを収集することが重要だとWeek4で学びました。仮説は一つに絞らず、複数立ててから絞り込むことが大切であり、仮説同士に網羅性を持たせる必要がある点に納得しました。しかし、網羅性や複数の仮説を考え過ぎると時間がかかるため、バランスを考えることが重要です。 営業成績向上の仮説は? 例えば、自分の営業成績が悪いときに成績を上げることを目的とした場合、様々なポイントで仮説を立てられます。行動数が足りない、提案の質が悪い、ニーズが大きいクライアントに当たっていないなど、様々な仮説が考えられます。網羅性の確認には他のフレームワークを活用することが有効です。 データと仮説の精度を高める方法 具体的には、まず仮説を立てるために自分の営業プロセスを分解し、その過程でフレームワークを調べたり、上長とディスカッションを行ったりして網羅性を高めます。また、過去の営業成績からデータを抽出し、仮説の精度を上げるための材料にします。もし不可欠なデータが不足している場合は、将来的にはデータの取得が可能となるように社内で提案することも考えられます。

アカウンティング入門

アカウンティングが身近に感じられる学びの6週間

どのようにアカウンティングが身近になったのか? Week1の自分とWeek6の自分を比較すると、アカウンティングがより身近に感じられるようになったことに気づきました。これは、PLやBSの基礎を身につけたおかげです。この知識を生かし、自社や競合他社、さらには異業種企業の財務三表を読み解き、分析できるようになるため、今後も学習を継続したいと考えています。 必要な知識をどう確認する? また、収支業務の年間スケジュールを確認することで、その時々に必要となる知識を把握しています。今回の講義で学んだ内容と照らし合わせて準備を進め、不足している点は自己学習により補完し続けます。最終的には、アカウンティングの専門知識を業務に使えるレベルまで高めたいと考えています。 アウトプットをどう活用する? 6週間の講義内容を復習するとともに、自己学習によるアカウンティングの学習を引き続き続けます。アウトプットとしては、自社の貸借対照表を確認し、気づいた点や疑問点をリストアップします。そのリストについて、自社内のアカウンティングに詳しい社員に聞き取りを行い、アドバイスを求めることで、自身の理解度を深めていきます。

クリティカルシンキング入門

問題解決の第一歩:イシュー設定の極意

適切なイシューの設定法は? 適切なイシューを設定する方法について、まずはロジックツリーを用いて問題や課題を詳細化し、その上でどの問題・課題をイシューとして設定するかを決定することが重要です。イシューは、状況に応じてタイミングよく変化させることも必要です。つまり、「今は何を考えるべきか?」すなわち「今解くべき問い(イシュー)は何か?」ということを常に意識することが求められます。 クライアントとの会議での活用法は? クライアントとの会議(特に進捗会議)で課題を探すときや、クライアントの課題分析や問題分析を行うときには、適切なイシューを設定することが決定的に重要です。また、資料全般をレビューするときには、資料の活用方法とその影響を予測して課題や問題がありそうかを見極めることが必要です。 自分の問いをどう共有する? クライアント向けに課題を発見する際には、イシューの明確化から取り組むことを心がけています。その際、自分の場合はA4以上のコピー用紙に手書きで書くことで、考えがまとまりやすくなります。自分がどのような問いに取り組んでいるのかをチームや上司に共有し、協力して解くことも大切です。

データ・アナリティクス入門

数字で見つける仮説と検証の旅

データ検証の重要性は? 総合的な演習を通じて、データをもとに仮説を立て、その後検証する一連のループを体験できました。単に数字を見るだけでなく、What、Where、Why、Howといった視点を意識してストーリーを組み立てる重要性を実感しました。 A/Bテストのポイントは? また、A/Bテストにおいては、比較対象以外のすべての条件をそろえることが非常に重要であると学びました。この考え方は、売上が変化した原因や理由を、経験則ではなくデータに基づいて示す際に大変役立つと感じました。 仮説検証の飛躍は? さらに、仮説から検証への流れを飛ばして結論に至ってしまう傾向があるため、他の可能性や選択肢がないかどうかも十分に検討する必要があると気づかされました。同時に、キャンペーンや広告の有効度を測る際には、測定したい内容以外の条件を同一にすることの徹底が求められるという点も大切だと感じました。 論理構築はどう? 最後に、分析やストーリー作成においては、What、Where、Why、Howを明確にすることで、より論理的で理解しやすい内容にまとめることが可能になると学びました。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

「必要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right