データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

戦略思考入門

メリットもリスクも見抜く経済戦略

規模と範囲の本質は? 今週の学びでは、事業経済性の仕組みをしっかり理解することの重要性を改めて感じました。規模の経済性は生産量を増やすことでコストが下がるというメリットがある一方、過度な拡大により在庫や固定費が増加し、逆に「規模の不経済」を招く危険性があることが分かりました。同様に、範囲の経済性は資源を共有することで業務の効率化が図れる反面、調整に時間や労力がかかりすぎると、期待される効果が得られなくなる可能性があります。また、ネットワークの経済性は利用者が増えるほどその価値を高める特徴がありますが、品質低下や無理な拡大がマイナスに働く場面もあると感じました。 戦略策定の鍵は? こうしたメリットとリスクを踏まえ、固定費や変動費の構造、さらには市場の状況を正確に把握することが、適切な戦略を練る上で欠かせないと実感しました。事業計画を策定する際には、どの経済性を活かすかを明確にし、固定費と変動費のバランスを綿密に分析することで、過剰投資や業務の複雑化を防ぐ判断基準を共有していく必要があると考えています。 固定観念を疑う? また、習熟効果にも限界があるため、既存の方法に固執せず、新たなアプローチや改善策を常に模索する姿勢が求められます。今後は、効率と柔軟性のバランスを取りながら、組織全体で価値を高める仕組みを進化させるために、事業経済性の視点をより一層活かしていきたいと思います。事業経済性の観点から、過去に具体的なリスクが顕在化したケースや、効果的な打ち手があれば、ぜひお伺いできればと思います。

アカウンティング入門

企業財務に秘めた学びの発見

P/LとB/Sはどう見る? 業種によって、P/LおよびB/Sの構造が大きく異なります。売上原価や販管費も、事業が提供する価値に応じて変化します。例えば、ある企業では、従業員が主要な提供価値となるため、人件費が売上原価に含まれています。つまり、どのような資産を保有し、どのような投資を行ったかをB/Sで確認し、その結果P/L上でどれだけのコストがかかり、どれだけの利益が出ているのかを理解することができます。事業内容と財務情報が密接に結びつく点が、非常に興味深いと感じました。 意外な学びはどこ? 自分が関わっている領域ではイメージしやすかったものの、関わりの少ない分野については新たな発見も多く、理解を深める良い機会となりました。AIを活用して主要な事業ごとのビジネスモデルや収益の特徴を整理することで、概念をしっかりと把握できたと感じます。今後は、代表的な企業の財務諸表を実際に見ながら、更なる理解の深化を目指していきたいと思います。 大事な視点は? また、以下のような視点も重要だと考えます。 決算報告は何を示す? まず、第二四半期の決算報告が自社だけでなく他社も発表しているため、これを比較検討することが有意義です。自社のP/Lの変化を、同四半期に実施した施策(提供価値の向上、投資、資産状況など)と照らし合わせて理解を深めることが求められます。 今後の戦略はどうする? 次に、自社の今後のP/L状況を予測し、戦略の変更や追加施策の必要性について検討することが大切だと感じています。

戦略思考入門

深まる学びで経済性を再発見

経済性をどう掴む? 〇〇の経済性については、前提条件や注意事項があることは少し認識していましたが、「〇〇の不経済」という言葉を知り、動画で具体例を学ぶことで、この原理原則をより明確に理解できたと感じました。活用の際には、前提をチェックするために、多角的に検討して分析対象の状況や背景をよく把握することが重要であり、フレームワークや原理原則を使うだけでは簡単に解決できるわけではなく、調査や理解に努力することが不可欠だと思いました。しかし、努力が必要な部分でもフレームワークや原理原則があることを忘れてはいけず、その知恵を活かすためには日々意識し、体に染み込ませていくしかないと実感しました。 運用体制は大丈夫? 現在進めている保守運用体制の複数社でのシェアードについても、この学びを活用できそうです。現状では、すべての観点でプラスの効果が出ると想定して体制やルール、費用負担の組み立てを検討していますが、実際には観点ごとに今回学んだ経済性と不経済の両方が混在しているのではないかと考えています。運用開始後に「こんなはずじゃなかった」という事態を避けるためにも、改めて冷静に分析したいと思います。 分析の流れは? 以下のプロセスで進める予定です。 まず、背景と目的を再確認します。次に、関連ファクトを収集・整理し(数値情報)、現在想定している期待効果を経済性や不経済を意識して再度分析します(ここで主に学びを活用します)。最後に、分析で明らかになった点を基に計画の見直しが必要か確認します。

データ・アナリティクス入門

ロジックツリーで紡ぐ成長の軌跡

原因特定で悩む? 問題解決のためには、「WHAT」「WHERE」「WHY」「HOW」の4つのステップで整理すると良いと感じました。私は特に「WHERE」の段階、つまり「原因の特定」に偏りがあったように感じますが、今後は「状況把握」や「解決策」に関しても仮説を立て、ロジックツリーを使って可視化するようにしたいと思います。一度有効だと考えた仮説に固執せず、全体を整理し直す柔軟な姿勢を大切にしていきたいです。 人事課題に挑む? 人事課題では、正解がない問題が多く、一般論や他社の傾向と自社の実情が必ずしも一致しない場合があります。そんな中で自分が立てた仮説やその結論を明確にするため、ロジックツリーを作成しながら取り組んでいくことが重要だと感じました。また、これまで属性ごとに人事データを層別分解してきたものの、変数ごとの解釈が不足していたため、状況に応じてさまざまな角度から仮説の検証を行えるように努めたいと思います。 本当の問題は? まずは、目の前のデータに頼るのではなく、何が本当の問題なのかを明確にするための仮説を立て、その仮説をロジックツリーのような形で整理していきます。現状のデータだけでなく、どんなデータがあればより適切な比較ができるかを考え、必要であればデータを収集できる体制を整えることにも注力していきたいです。 検証の進め方は? 最後に、実際にデータを使って仮説を検証する際には、ログを残すことや、時間や状況の違いを比較することを意識しながら、着実に分析を進めていく所存です。

クリティカルシンキング入門

解像度を上げる分解思考

分解で見える変化は? 物事の解像度を上げるためには、対象を細かく分解することが有効です。分解した結果をグラフにすると、視覚的に変化が把握しやすくなります。 単純合算は危険? たとえば、①の切り口と②の切り口でそれぞれの結果を導き出した後、単に合算して「~の傾向がある」と判断してしまう自分の傾向に気づくことがありました。しかし、このような安易な判断では、実際の状況を正確に捉えられない可能性があります。 早期結論で誤解? また、すぐに結論に至ると間違った傾向を導き出すリスクがあるため、複数の切り口で分解し、得られた結果を合わせて検討することが重要です。仮説を立てた場合は「本当にそうであるか」を疑い、さらに検証する姿勢が求められます。 MECEの使い方は? MECE―もれなく、ダブりなく分解するという考え方―は、タスクごとにどれだけの工数がかかっているかを把握する作業に役立ちます。グラフ化により、全体の中で平均以上の工数がかかっているタスクを見直すことで、必要なリソースや業務の調整が行いやすくなります。 実例で確認する? プロジェクトにおいては、MECEの手法を用いて、チームメンバーがどのプロセスで課題を抱えているのかを分析しています。ただし、「もれなく」を意識しすぎることで、カテゴリが過剰に分割され、現実の問題に完全にフィットしない場合もあります。実務上、これらの点をどのようにコントロールして使用しているのか、具体的な実例を示していただけるとありがたいと感じています。

クリティカルシンキング入門

偏りを超える思考の旅

自己認識の大切さは? クリティカル・シンキングを習得する上で、まずまず印象に残ったのは、自分自身の思考の偏りやクセを客観的に認識することの大切さです。どうしても自分が考えやすい方向に偏りがちであるという点は、自らの行動を振り返った際に実感できました。自分の思考の特徴を把握し、冷静に見直す習慣をつけることで、思考の幅を広げ、偏りから抜け出すことができると感じました。 相手に働きかける方法は? また、単に課題解決を行うだけでなく、論理的かつ構造的な思考を通じて相手に働きかけるコミュニケーションにつなげる意識が重要であると再認識しました。初回のライブ授業までは、クリティカル・シンキング=問題解決手法というイメージが強かったのですが、実際には、相手の置かれた状況や考えをしっかり意識し、どのような行動を促すかという点も大切だと実感しました。 顧客の課題理解は? 具体的には、例えば顧客向け資料の作成や、プレゼンテーション、打合せでのファシリテーションにおいて、まず伝えたい内容や、顧客が抱える本質的な課題を正確に理解することが必要です。思考のスタート地点で情報を整理し、具体と抽象の視点や、複数の観点からの検討を行うことで、無駄のない効率的な作業と、相手に響く提案ができると考えています。 突発状況への対処は? さらに、突発的な質問や状況に対しても、文脈を的確に汲み取り、適切な回答ができるように、最初の段階から顧客にとって本当に有益で、行動を促すような情報の収集を心がけたいと思います。

データ・アナリティクス入門

データ活用で未来を切り拓く

最終週の学びはどうだった? 今週は最終週ということもあり、講義を通じて現状把握からデータ分析までのプロセスを総合的に演習しました。どのような課題があるのか、またその課題を明確にするためにはどのようなデータを収集し、どのように見せるのが適切なのかについて学びました。 データは十分揃っている? しかし、その過程で実際に必要なデータが十分に集まるのかという疑問も浮かびました。現実には、分析に十分なデータが整っている状況はなかなか見受けられないことを実感しました。 どうやって改善するの? これからは常に課題解決の意識を持ち、どんなデータが必要なのかを考えながら業務に取り組んでいきたいと思います。分析以前の段階で、既にデータがあるものの活用されていなかったり、そもそも必要なデータが得られていないというケースも散見されるため、まずは現状のデータをしっかりと比較・検証し、仮説を立てた上で課題解決に向けた取り組みを進めることが大切だと感じました。 統計学の疑問は何? また、統計学的な観点についてもさらに学んでみたいと考えています。例えば、アンケート調査を実施した場合、何件の有効回答が集まれば信頼できるデータとみなせるのか、という点は特に興味深いです。ある評価指標が低い状態からわずかに上昇した場合、その変化が誤差の範囲内なのかどうか、母数に対してどの程度の割合であれば誤差として認識すべきかという具体的な例に基づき、より専門的なデータ分析について深掘りして学んでいきたいと感じました。

リーダーシップ・キャリアビジョン入門

現場で磨くリーダーの挑戦

数値目標達成の秘訣? 私は営業のプレイングマネージャーとして、チームと個人の数値目標(予算)の達成に責任を負っています。予算達成のためには、自身だけでなくチーム全体でマーケットを正確に把握し、どこに何をどのように売るかという戦略の立案と実行が求められます。 戦略の言語化はどう? 戦略の立案・実行にあたっては、メンバーに対して依頼事項や全体像(目的や達成すべき姿)を言語化し、見える化して伝えるよう心がけています。また、メンバーの理解度を確認しながら進めるとともに、悩みや行き詰まりがある場合は迅速にヒアリングし、情報共有できる環境を整えています。 全員でリーダーシップ? さらに、私自身だけでなくメンバー全員がリーダーシップを発揮できるよう、私自身が実践している取り組みを体験できる体制づくりにも力を入れています。 最適な業務進捗は? 一方で、経験の浅いメンバーが多い中で多くの仕事を回す必要があり、任せすぎることで負担がかかる懸念もあります。そのため、どのように業務を進めるのが最適なのか、日々試行錯誤しています。こうした状況において、皆さんはどのように業務を推進しているのか、ご意見をお聞かせいただければと思います。 交流はどう高める? また、営業職であるため出張や外出が多く、メンバー間でコミュニケーションをとる機会が少ないと感じています。チーム内でどのようにコミュニケーションを活性化させているかについても、ぜひ意見交換させていただきたいです。

データ・アナリティクス入門

仮説とデータが照らす成功の道

データ収集の手法は何? まず、データの収集方法について整理します。既存のデータを確認する場合は、手持ちの情報や一般に公開されているデータ、あるいはパートナー企業が保有しているデータを活用します。一方で、新たにデータを集める手段としては、アンケート調査やインタビューが挙げられます。特にインタビューは、背景を丁寧に確認できる反面、拘束時間や費用がかかる点に注意が必要です。 仮説設定はどう考える? 次に、仮説について考えます。仮説とは、ある論点に対して立てる仮の答えや、まだ明確でない事項についての一時的な見解を指します。たとえば、ある事業の成功は難しいとする結論の仮説と、具体的な問題点を洗い出して解決策を検討する問題解決の仮説があります。結論の仮説は、計画やプロジェクトを始める際に初めに立て、それが思うように進まなかった場合に問題解決の仮説を用いることで軌道修正を行います。 仮説検証はどのように? また、仮説は検証マインドの向上や説得力を強める上で重要です。日常的に市場や競合などの状況証拠を集め、論理的に分析することで、より精度の高い仮説が立てられます。こうしたプロセスは、計画のスピードアップや行動の精度向上にも寄与します。 情報の言語化はなぜ大切? 最後に、普段から問題意識を持って状況を把握し、得た情報を具体的かつ明瞭に言語化することが大切です。興味を持った点にアンテナを張り、現象の背景を分析する習慣は、論理的な思考力とコミュニケーション能力の向上に役立ちます。

データ・アナリティクス入門

データで綴る学びの軌跡

プロセスはどう進む? 分析を進める上で、プロセス・視点・アプローチの3つの要素が大変重要であると感じました。プロセスでは、まず目的を明確にし、次に仮説を立て、データ収集を行い、最後に検証を実施します。 視点でどう捉える? 視点に関しては、結果への影響度(インパクト)、特徴の理解(ギャップ)、一貫した変化(トレンド)、データの分布(ばらつき)、および法則性(パターン)など、複数の切り口でデータを捉えることが大切だと思います。 数式で理解できる? また、グラフや数字、数式を使って分析すると、視覚的にも理解しやすくなります。具体的には、単純平均、加重平均、幾何平均、中央値、標準偏差といった数式を用います。特に標準偏差は数値が大きければばらつきが大きいことを示し、小さい場合はデータが密集していることを意味します。 販売データはどう見る? 販売データを扱う際には、まず代表値と分布から傾向を掴むことが重要だと痛感しました。大量のデータがある場合、グラフを活用してばらつきを確認することにより、より精度の高い分析が可能になると考えています。また、平均値と中央値を比較することで、全体の状況を把握しやすくなるとも感じました。 業務でどう活かす? 実際の業務では、単純平均、加重平均、幾何平均、中央値、標準偏差など、どの指標を使用するのが最適かは、経験と慣れに依存する部分があります。今後も多くのデータ分析に取り組むことで、自分自身のスキルとして確立していきたいと思います。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。
AIコーチング導線バナー

「状況 × 把握」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right