戦略思考入門

選択と差別化の成功と失敗を学ぶ

どうして失敗を重視? 規模の経済や多角化について、成功例だけではなく失敗例も学びました。「なんとなくよさそう」という選択肢に飛びつかず、「うまくいかないケースはないか?」を意識して確認する必要があると感じました。 補足はどう工夫? 総合演習では、情報が足りない時にどのように補うかを考えながら取り組みました。日常生活でも、安易に選択してしまうことがあるのかもしれないと感じました。選択するかしないかを広い視野でとらえ、その背景を分析し、メリットとデメリットを正確に把握する必要があります。 どう差別化実現? 現在取り組んでいるペーパーレス推進の中では、「捨てる」ことと「他社との差別化」を両立する施策を意識しています。業界内の動向だけでなく、他業界での先行事例も注視しています。「なんとなくよさそう」で判断せず、定量的データを用いて根拠のある提案を行うよう努めています。 何を見極める? 定量的データを活用し、同業界だけでなく他業界の事例も広く集め、自社に活用できる部分がないかを検討しています。その際、自社の差別化につながるかどうかという視点を重視しています。また、ペーパーレス実現後の影響も考慮した施策を構築しています。

データ・アナリティクス入門

標準偏差が拓く学びの新視点

データの全体像はどう捉える? 標準偏差を活用することで、データのばらつきを正確に把握でき、分析の全体像を掴むきっかけとなりました。平均値だけで物事を判断しないためにも、中央値など他の指標を併せて見ることの大切さを実感しています。 グラフで視覚的に理解できる? また、ヒストグラムは各グループの構成比を視覚的に捉えるのに非常に役立ちます。特に、世代などX軸の単位が明確なものの場合、グラフ化することで理解しやすくなると感じました。売上実績の分析など、データのばらつきを確認することで、より正確な施策の検討が可能になると考えています。 苦手意識は克服できる? 個人的には、以前は標準偏差に対して苦手意識がありましたが、全体のばらつきをとらえる重要な指標として積極的に活用する決意を新たにしました。さらに、ヒストグラムのように一目で内容を把握できるグラフ作成を通じて、プレゼンテーション時の相手の理解促進や、意思決定のスピード向上に貢献したいと思います。 分析の認識共有はどう進む? 今後の日々の分析においては、標準偏差やその他の代表値を取り入れ、データ全体の認識を共有することで、正確な判断に結びつけていきたいと考えています。

戦略思考入門

顧客視点で切り拓く実践の真髄

顧客視点は何が大事? 施策自体は数多く存在し、斬新なアイディアも含まれる中で、自社の環境に合わせた実効性のある打ち手を実施するためには、正確に差別化を行うことが不可欠だと実感しました。何よりも重要なのは顧客目線であると気づかされ、社内の打ち合わせや申請フローに追われながらも、常に顧客の視点を忘れずに取り組むことが大切だと思います。また、考え方のサポートとなるフレームワークを活用することで、具体的なアプローチがより明確になると感じています。 企画段階で差は出る? 食品という限定されない商品群を取り扱う中では、企画や提案の段階で差別化を意識することが求められます。今後は、顧客が望む売上や利益のタイミング、さらには消費者が求める品揃えや展開時期をしっかり考慮し、競合他社との差異を明確にした上で提案を進める姿勢を徹底したいと考えています。 業界の可能性は? また、自身が属する食品業界については、バリューチェーンやシナリオプランニングの手法を用いて分析を開始し、業界内の自社の位置づけや可能性を具体的に把握しようと考えています。同様の手法を担当先でも活用し、知識と実践の両面で理解を深め、記憶に定着させることを目指します。

戦略思考入門

差別化戦略で競争優位を築く方法

差別化の鍵は何? 3Cのフレームワークで学んだことを通じて、差別化戦略を考える際の重要なポイントとして、訴求するターゲット顧客の設定と顧客視点での競合の設定があることを理解しました。 自社をどう活かす? この考え方を基に、自社のリソースで何が可能であり、また中長期的な差別化がどのように実現できるかを検討する必要があります。競合に意識を向け過ぎると顧客への配慮が薄れるため、常に大局的に物事を見る習慣を身につけたいと考えています。 自部署の価値は? バックオフィス業務の集約化・効率化を図る自部署の業務形態を考えると、顧客は本社や店舗であると理解しています。この範囲内では直接的な競合は存在しないものの、将来的に業務の範囲を社外まで広げる際には競合との差別化が不可欠です。そのため、自部署が提供できる価値を改めて整理する必要があると感じました。 資源の整理は? 顧客や競合の設定に先立って、現状の情報整理が不十分であると感じています。そこで、今回のVRIO分析を参考にしながら、自部署が持っている価値、希少性、模倣困難性、そして組織としてどのような資源があるのかを整理することから始めたいと考えています。

データ・アナリティクス入門

選ぶ力が分析を変える

手法選択は何が肝心? 様々なアプローチからデータを検討することで、仮説の精度が向上することを実感しました。しかし、すべての手法を無差別に試すのは非効率であり、分析の目的に沿った適切なアプローチを選ぶことで効率よく進めることが大切です。 代表値の選び方はどう? また、代表値には多くの選択肢が存在するため、データの性質や分析目的に応じた計算方法を選ぶ必要があります。一定の経験を重ねれば、どの代表値が最適かパターンを把握しやすくなると思います。 グラフ選びはどう判断? 製品の計測データなどを分析する際は、適切な代表値を選ぶことに加えて、標準偏差も併せて算出することが求められます。レポートを作成する際には、分析目的とデータの特性を踏まえて適切なグラフを用い、他者の手法に対しても改善の余地がないか検討する姿勢が大切です。 再検討の意義は何? これまで、代表値として単純な相加平均に頼ることが多かったため、今後はデータの性質を再検討し、その選択が本当に妥当なのかを吟味するようにしたいと考えています。また、グラフの選定についても感覚に頼るのではなく、目的を明確にした上で最適な可視化方法を選ぶよう努めます。

マーケティング入門

ターゲティングで差別化を実現する方法

ターゲット顧客による価値の違いとは? 今回の事例を通じて、同じ商品でもターゲット顧客によって価値の感じ方が異なることが分かりました。これがヒット商品につながる要因となるのです。自社や他社の特徴を正確に理解し、自社の強みを複数組み合わせることで、その業界での差別化ポイントを見つけることが可能です。 成功事例から学ぶべきことは? 成功事例の一部では、ターゲティングの評価基準(6R)で高い指数を示しています。セグメンテーション、ターゲティング、ポジショニングの考え方は商品提案においても非常に重要であり、評価指数の高いターゲットに向けたコンセプトを考えることで、より確度の高い提案が可能となります。そのためにも、自社の強みを正しく把握することが重要だと感じました。 セグメンテーションの具体化への道 セグメンテーションやターゲティングの用語はこれまでも耳にしていましたが、実際に商品を考える際にはまだ具体的なイメージがつかめていません。そこで、身近な商品などの事例も踏まえ、これらの考え方に慣れていきたいと思います。また、自社の強みを改めて棚卸しし、複数を組み合わせることで、業界での勝ち筋を考えてみたいと思います。

マーケティング入門

商品が売れる鍵は「魅せ方」だった!

顧客心理の理解は重要か? 今週の実践演習を通じて、顧客のニーズが満たされていても、その商品の魅力が伝わらなければ売れないことを学びました。また、新商品を購入する際、顧客が躊躇する心理が働くこともマーケティングにおいて重要な点であり、新たな気づきになりました。このような心理が働く可能性を理解した上で商品の魅力を伝えなければ、優れた商品でも「売れる」ことには繋がりません。 魅せ方をどう工夫する? イノベーションの普及条件のフレームワークを活用し、顧客に伝わる商品の魅せ方を追求する必要があると感じました。まず、自社商品のコンセプトと魅せ方を改めて確認し、その上で包材の側面から新たな価値を付加できないかどうか考えます。また、自分が思っていた商品の魅力と実際の魅せ方が一致しているのかも吟味します。 競合との違いを見極めるには? さらに、売れている商品がどのような魅せ方をしているのか、他社の競合商品と比べてどのように差があるのかを、お店の商品を見ながら比較してみます。新商品が出たときに、それを「買いたいと思うか、買いたくないと思うか、なぜそう思ったのか」について、自分自身の考えを深堀して、その商品魅せ方を検証していきます。

データ・アナリティクス入門

仮説と対話が創る次世代研修

仮説検討時、多角的視点は? 仮説を検討する際は、思考の範囲を広げることが重要です。そのため、フレームワークや対概念を活用し、多角的な視点から仮説を立てる工夫を行っています。 A/Bテストで差は出る? また、Howを考える段階でA/Bテストの手法が有効だと考えました。A/Bテストでは、従来の方法で実施するグループと新たな介入方法を採用するグループに分け、基準を統一して介入の違いだけを明確にし、効果の原因を特定できるようにします。 研修効果の確認は? こうした手法は、社内研修の効果測定にも応用できると考えました。研修の開催形式(対面またはオンライン)、実施内容(座学中心かワークショップ中心か)、講師の伝達方法などでグループ分けを行い、研修後のアンケートやミニテストを通じて効果を検証する方法です。 入社研修、何が改善点? 現状、私が担当している入社時研修は座学中心で、受講者同士の対話がほとんど見受けられません。そこで、講義内容に受講者間で対話ができる設問を追加し、対話の時間を設けるなど、ワークショップに近い形式へと徐々に変更していく計画です。まずは、会社概要の部分をクイズ形式にするなど、工夫を重ねる予定です。

アカウンティング入門

数字の裏側に光る実践の知恵

本業の利益って何? 営業利益は本業で得られる収益と費用の差額、つまり本業での儲けを示す指標です。一方、経常利益は本業以外の収益や費用も含め、事業全体として持続的に利益が出ているかを判断する材料となります。最終利益である純利益は、これら一連の利益計算の総括として位置づけられます。 損益項目の違いは? 企業ごとに提供する価値やビジネスモデル、コンセプトの違いから、各損益項目の特徴や数値は異なるため、PL(損益計算書)をもとに自社の強みや弱みについて仮説を立て、分析することが求められます。 計画は合致している? まず、所属部門が策定する年間実施計画について、取組アイテムや目標、スケジュールが自社のPLと合致しているかを確認することが重要です。また、担当するプロジェクトの商談においては、ターゲット価格から原価、利益までを検討する際に、自社の決算説明会の内容をしっかり理解し、部下にもその要点が伝わるように説明する必要があります。 他業界の価値は? さらに、製造業に勤務している立場から、製造業以外の業種が提供している価値とPLとの相関関係を見直し、どのような特徴として表れているのかを分析してみることも有益です。

データ・アナリティクス入門

平均を超えた数字の物語

分析の精度をどう? 普段の分析では平均値に頼ることが多いですが、データのばらつきを十分に表現できない点が印象に残りました。標準偏差はこのばらつきを把握するための指標であり、分析の精度を高めるためにぜひ取り入れるべきだと感じています。業務ではすでにビジュアル化の手法を用いていますが、今後は標準偏差も活用していきたいと考えています。 採用分析の狙いは? 採用状況の分析については、平均値だけではなく標準偏差を用いることで、応募者数や面接評価の個々のばらつきをしっかりと捉え、より詳細な傾向を分析する計画です。これにより、採用プロセスの安定性や特定の職種や部門における採用難易度の変動を明確に把握することが可能になります。その結果、より効果的な採用戦略の策定やリソース配分の最適化へとつなげることを目指しています。 計算環境はどう? 現在は、最新の採用データを整理し、Excelなどのツールを用いて標準偏差を計算できるような環境を整えています。主要な指標である応募者数や面接評価の標準偏差を算出し、比較分析を実施する予定です。こうした分析結果を視覚化して定期報告に組み込むことで、より深い洞察を得られる体制を構築していきます。

データ・アナリティクス入門

ばらつきが拓く学びの扉

仮説設定の重要性は? 今回の講座では、データをただ眺めるのではなく、仮説を立てることの大切さを学びました。単純な平均値だけでなく、重みを考慮した加重平均やデータのばらつきを確認することで、ファクトを正しく把握する手法が身についたと感じています。 統計の意味をどう捉える? これまでは加重平均や標準偏差といった言葉を聞くだけで、その意味を十分に理解できていませんでした。しかし、今回の講座を通して、実際にばらつきを見る体験ができたことで、データの変動の重要性を実感することができました。 販売実績はどう理解? また、プロダクトごとの販売実績推移を分析する際には、属性別やレンジ別の分布を見ることで、どの層に受け入れられているのかを明確にし、施策の検討につなげることが可能であると感じました。分布のばらつきをしっかり確認することで、単なる傾向だけでなく、他の要因の影響も把握する助けになると気づかされました。 顧客分析に納得する? さらに、これまでプロダクト別の顧客分析では、平均値や中央値に頼ることが多かったのですが、今後はばらつきの数値化を取り入れ、日々や月ごとの実績をより一層可視化していく必要性を感じました。

データ・アナリティクス入門

予測に挑む!データの秘密

予測の意義は何か? グラフを見る前に予測を立てる大切さが非常に印象に残りました。自分の予測と実際のデータとの差異を意識すると、「なぜこんなギャップがあるのだろう」という疑問が自然に湧き、分析を深堀りするうえで効果的であると感じました。予測と実績を比較するアプローチは、次にどのデータを詳しく見るべきかという方向性を明確にする上でも有用です。 平均値の限界は? 従来、総量を人数で割って1人あたりの平均値を算出し、能率を評価していましたが、詳細に見るとその平均値だけではばらつきを十分に捉えられないことが分かりました。実際に細部まで分析すると、能率には大きな差異が存在していたため、平均値だけに頼るのは疑問が残ります。そこで、中央値を算出することで、平均値では見逃しがちな偏りを補完する方法を試してみようと思います。 中央値の有効性は? また、標準偏差を用いて平均値からのばらつきを把握する手法もありますが、場合によっては中央値と比較するだけで十分な情報が得られる可能性もあります。今後は、業務の能率評価において、平均値のみならず中央値の使用意義を周知し、従来の考え方から新たな視点に変えていくことが重要だと感じています。

「差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right