データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

データ・アナリティクス入門

実践が磨くデータ分析の極意

分析の目的は? データ分析の基本は、正確な手法の選択とアウトプットの工夫にあります。まずは分析の目的をはっきりさせ、整理すべき具体的な要素をまとめることで、比較対象や評価基準を設定することが重要です。また、グラフの種類やデータの加工など、第三者が見ても客観的な判断ができるような見せ方を工夫する点にも留意しました。 マネージャーとの調整は? ヘルスケア領域のコンサルティング業務においては、実際に分析に取り掛かる前に、マネージャーとの認識統一が欠かせません。分析する項目の選定や、加工の必要性、さらには比較対象や基準、定義の設定について事前の調整を行うことで、適切な手法を選択できると実感しました。 数字の示唆は? また、定量的なデータ分析は単に数値を示すだけでなく、その数値からどのような示唆を得るかが大切です。データ分析の結果をマネージャーに提出する前に、伝えたいメッセージを明確にすることの重要性を理解し、背景や目的の整理、現状分析、課題抽出、解決策という業務プロセス全体の中で、正しいデータ分析方法とそのアウトプットが不可欠であると再認識しました。

リーダーシップ・キャリアビジョン入門

一歩ずつ信頼を育む現場

リーダーシップをどう発揮する? この4月から、今まであまり求められてこなかったリーダーシップ発揮が期待されているため、メンバーとの関係性や信頼の構築に努めたいと思います。まず、チームの各メンバーが抱える事情や、家庭環境、仕事に対する熱意、能力などはそれぞれ異なるため、その人に合ったこまめな声かけや気配りを意識して行いたいと考えています。また、「ほうれんそうの仕方」など、既に周知の事項であると決めつけず、丁寧に伝えることを心がけるとともに、入社年数が短いメンバーには特に気を配って接するよう努めます。 具体的な実践方法は? さらに、私自身が考えている以上に、行動で示すことが信頼獲得につながると痛感しています。そのため、態度や言葉でリーダーシップを実践していく所存です。また、メンバーが納得して仕事に取り組むためには、業務全体の流れや目的、最終目標を明確にした上で指示を出すことが大切だと感じています。指示後も進捗を随時確認し、行き詰まりがないか注意しながら、一方でメンバーが自ら考えて行動できる環境を見守る気持ちを忘れずに、サポートしていきたいと思います。

クリティカルシンキング入門

学び深める「問い」の力を体得!

どうやって学びを深める? 知識のインプットとアウトプットを繰り返し、他者からフィードバックを受けるサイクルを継続していきます。これにより、学びを深めることができると感じています。特に、「問いから始める」「問いを立て続ける」「問いを共有する」という3つの点を意識し、実践していくことが重要です。問いを共有する際には、特に丁寧に行う必要があると実感しました。 業務でどう活用する? このアプローチは業務の中でも多くの場面で活用できると考えています。例えば、得意先への訪問準備や会議準備のミーティングなどで役立ちます。社内でも毎週のミーティングに課題を検討する時間が設けられているため、問いを考えるには最適な機会があります。早速この方法を取り入れて試してみたいと思います。 会議で何を共有する? 社内ミーティングでは、問いを立てて共有することを繰り返し行っていく予定です。同僚からのフィードバックを受けることで自身のスキル向上だけでなく、周囲の意識変革も期待しています。チーム全体が同じレベルに達することで、モチベーションの維持にもつながることを期待しています。

データ・アナリティクス入門

データが導く未来へのビジネス突破口

データ取得の方法をどう改善する? 複数の仮説を立て、それを検証するためのデータを取得することについて学びました。これまでは、既存のデータを用いて検証することが多く、完全な結果ではないと感じることがありました。今後は、仮説の精度を向上させるために、データの取得方法を工夫し、再構築していきたいと思います。 ニーズ調査で次に向かうべきは? また、担当するマーケットのニーズ調査についても学びました。従来の一般的な仮説からもう一歩踏み込み、「なぜ、なり手不足になるのか」という問いに対する仮説を立てて検証し、その結果に基づいて課題を解消するようなサービス案を考えることが重要だと認識しました。 ワーキンググループの成功へは? 現在、社内で行っているワーキンググループでこれを実践しています。ニーズの検証までは完了していますが、まだ具体的なビジネスには結びついていません。「Q2」を実践することで、早期に実際のビジネスへと発展させたいと考えています。 仮説とデータ活用の展望 今後も、仮説の立て方やデータの取り扱い方を工夫し、実務に活かしていきたいです。

マーケティング入門

顧客志向の新たな価値創造に挑戦

顧客志向の重要性を再確認 マーケティングにおいては、何よりも顧客志向が重要であることを改めて学びました。「売れる仕組みを作ること」がマーケティングの定義とされていますが、その根底にあるのは顧客の存在です。すなわち、自社の商品を単に知ってもらうだけでなく、その魅力を感じてもらうことが重要です。 社員満足度向上の方法とは? 自社のサービスを将来的に営業や外部収益に結びつけるために活用するのはもちろんのこと、顧客を社内外のメンバーやステークホルダー全員と捉えることによって、課やオフィスの従業員満足度を高めることにもつながるのではないかと考えます。 全ての人を顧客と捉える意味 自分に関わるすべての人を「顧客」として捉え、その方々に満足していただくためには何が必要かを考えることが大切です。そのためには、その人たちのニーズを正しく把握し、偏った考えに陥らないよう、広い視野や様々な視点、そして高い視座を持って物事を捉えることを意識したいと思います。そして、そのニーズに応える、あるいはそれを上回るサービスを提供できるスキルを磨くことを心掛けたいです。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

データ・アナリティクス入門

偏差値では語れない実感

平均に秘めた疑問は? 教育現場では、単純平均ばかりが重視されがちです。標準偏差を基に算出される偏差値は、詰め込み教育の象徴とされることもありますが、標準偏差を無視すると真実を見誤る可能性があることを、ぜひ周囲にも伝えていきたいと思います。 統計教育の難しさは? 私は高校で数学の教員を務めており、新課程において数学の統計分野が必修となったため、標準正規分布まで教えることになりました。この単元は多くの数学教師にとって教えにくいと感じられがちですが、実際に社会人になってから最も役立つ知識であると実感しています。実際、校内の制度を変更する際には、正規分布に基づくデータを示すことで説得力を得た経験があります。 定量分析に挑戦すべき? また、私は生徒の成績データを扱う部署に所属しており、統計の知識はすでに成績データの分析に活用されています。一方で、生徒募集に関しては、一般企業での営業活動に例えられるように定性データが中心で、定量データの解析が進んでいません。そこで、データ収集の方法を見直し、次年度から定量的な分析を強化していこうと考えています。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

クリティカルシンキング入門

固定概念をひらく数字探求

どんな切り口がある? データの扱いや切り口を変えることで、見え方や結果が大きく異なることを学びました。「本当にこれだけなのか?」と問い続ける姿勢の大切さを痛感しています。また、思い込みや自身の仮説だけで分析しないよう、注意が必要だと感じました。特に、細かくデータを刻む手法は非常に印象深く、発見の連続でした。 定性と数字はどう違う? 普段は定性的な業務が中心で、データを扱う機会が少なかったので、新しい視点を得られたことに新鮮さを感じました。その一方で、数字をもっと活用すれば、業務の見え方が変わる可能性を実感しました。これまで「この業界はこの数字」という固定概念にとらわれていた部分以外の新たな数字や切り口を探る必要があると考えさせられました。 どんな指標が必要? この授業を通じて、定性的な課題をどのように数字に置き換えるか、またどんな指標を使えば良いのかを改めて考える機会となりました。定性的なものを数字化する際には、それに見合う指標や基準が不可欠であり、その処理方法についても他の受講生の意見や感想を参考にしながら模索していきたいと思います。

クリティカルシンキング入門

数字で掴む新たな視点と成長

数字分解の大切さは? 今回の講義では、数字を分解して考える方法や、さまざまな切り口を試し、定義を明確にしてMECEの考え方を適用する手法を学びました。普段あまり意識してこなかった視点から、改めてデータを多角的に検討することの大切さを実感し、新たな気づきを得ることができました。特に、数字に苦手意識があった私にとって、グラフに少し足して割合を示すなどの工夫が、問題点の発見を助けてくれると感じました。 採用データは何見る? また、採用に関する応募者のデータを、自身で分解し、多角的に検討する重要性にも気づかされました。これまでは、採用媒体の営業担当からの数字の共有を受けるだけでしたが、自分でデータを操作し、さまざまな属性からボトルネックを見つけていく試みは非常に有意義でした。今後は、これまでの採用データを自分なりに細かく分解し、現状の強みや弱みを洗い出して、次の募集掲載の対策に生かしていきたいと考えています。 継続的な対策は? 一度の検討に留まらず、継続的にデータを分解し、数字に基づいた対策を立案できるよう努めていきたいと思います。

戦略思考入門

フレームで拓く戦略の見える未来

現状はどう整理する? 戦略を考える出発点は、まず内部と外部の現状を俯瞰して整理し、正しく把握することにあります。実際の事例から、私たちは目の前の出来事や直近の経験に影響され、偏った見方をしてしまうリスクがあると実感しました。そのため、フレームワークを活用して抜けや漏れなく現状分析を行う重要性を再認識しました。 業界状況をどう見る? また、PEST分析を用いて業界全体が直面する状況を整理し、その上で3C分析を通じて今後の勝ち筋を見出すことに大きな可能性を感じました。中長期的な戦略を立案する過程では、バリューチェーン分析を活用し、自身が所属する製造部門が提供しているユニークな価値について深く考える機会となりました。 分析実践はどう進む? 具体的には、PEST分析を実施して税制の変化などの業界に影響を及ぼす要因を整理し、その影響を製造部門における各プロセスに反映させる方法を検討します。また、バリューチェーン分析の実践例を参考にしながら、どのような付加価値が生み出されているのかを体系的にまとめることで、今後の戦略立案に役立てたいと考えています。

「方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right