データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

戦略思考入門

実戦に活かす経済理論のヒント

学びはどこから来る? ビジネスを成功させるためには、人件費削減や生産性向上に加え、事業経済性について学ぶことが必要だと実感しました。特に、規模の経済性、習熟効果、範囲の経済性、ネットワーク経済性に関する理解が深まったことが印象的でした。総合演習では、ある企業を題材に、売上の分析や改善策、事業の多角化、宣伝、広告などについて考察し、理論の具体的な適用方法を探ることができました。 役割分担は見直せる? 自身の業界や自社に当てはめると、規模の経済性と範囲の経済性においてまだ改善の余地があると感じました。特に、各組織での役割分担が固定化している現状を変えるためには、上位概念を明確に示し、どの部署が何を担い、どこに責任があるのかを明確にする仕組みが求められると感じます。また、アウトプットの成果を正しく評価できる体制も必要だと実感しました。 改善策はどう探る? さらに、習熟効果に関しては、ノウハウのマニュアル化や知識の蓄積といった形式知の整備、さらにはAIの活用を通じた日々の改善が重要だと再認識しました。遅れを取るリスクを改めて認識し、今後の課題として取り組んでいきたいと感じています。 戦略はどう組み立つ? 自身の開発業務においては、ターゲットとする国や地域、対応する法規をグルーピングし、いかに規模の経済性を活かすかを検討する予定です。自社だけでなく、グループ会社や主要関連企業との整合性を十分に考慮し、事業全体としての経済効果を最大化する戦略を構築することが重要だと考えています。

データ・アナリティクス入門

平均だけじゃ語れないデータの魅力

平均値だけじゃない? データを可視化する際、平均値を中心に考えがちですが、加重平均や幾何平均といった別の手法も存在し、目的に応じて使い分けが必要だと改めて感じました。また、平均値は外れ値の影響を受けやすいため、標準偏差での比較やグラフを用いて全体のばらつきにも注目することが重要であると学びました。 ヒストグラムの理由は? 年齢分布のグラフについては、ヒストグラムを選択しましたが、その理由が十分に明確にできていなかったと感じています。なぜヒストグラムが最適なグラフであるのか、今後は選択した理由を具体的に説明できるようにしていきたいと思います。 指標の選択は? 過去データとの比較を行う際、単純平均や割合のみに頼るのではなく、数値の規模やばらつきも考慮して加重平均や幾何平均、さらには中央値など、複数の指標を取り入れる必要があると再認識しました。 仮説思考はどう? また、データ分析のプロセスにおいて、これまであまり意識していなかった作業の流れを見直し、今回学んだ「仮説思考のプロセス」を参考に、目的を明確にし仮説を立てながら作業を進めていくことが大切であると感じました。 資料のまとめ方は? さらに、分析データを資料にまとめる際には、記載している数値(代表値)がどのようなものなのか、またどのようにグラフ化しているのかを明確にすることが求められると考えています。業種によっても適切な可視化方法が異なるため、差し支えない範囲でその違いを把握し、説明できるよう努めたいと思います。

クリティカルシンキング入門

クリティカルシンキングで職場革命

クリティカルシンキングとは何か? クリティカルシンキングは、パソコンでいうところのOSやCPUのように、人間のスペックを決める重要なスキルです。それには、自己チェック機能も求められます。クリティカルシンキングは瞬発力と持久力の両方が必要で、他者に何かを伝える際や、課題解決、そして意思決定の際に求められます。講義を通じて、自分が日常的に偏った考え方をしていることを実感しました。これからは、物事を適切な方法で、適切なレベルまで考えられるような土台作りを進めていきたいです。 どのように視座を変える? 社内外の会議でのファシリテーション、相手にわかりやすく伝える説明、コミュニケーション時の対応(口頭、メール、チャット)、アクションプランの作成や改定などで、感覚や経験に頼らず、様々な視点を持ち、視座を変えて視野を広げることが求められます。 なぜ常に計画を疑問視すべきか? 常に決めた計画に疑問をぶつけることが大切です。なぜうまくいくのか、他に方法はないのか、前提が崩れるときの状況はどうかを、多様な視点からレビューする癖をつけることが重要です。また、一つの問題については焦らず、対処策をじっくり考えることが必要です。効率と充実を両立させるためには、異なる役割を持つメンバーが集まり、思考がバラバラになることがあるかもしれません。しかし、話の脱線にも本質が隠されていることがあるので、会議のゴールを忘れずに、想定しない重要な話が出た際には、うまく話をまとめ、リードできるように心がけたいです。

クリティカルシンキング入門

分解から見出す成長のヒント

分解の切り口は? 先週までの学びで、分解することの重要性については理解が深まりましたが、どのような切り口で分解すれば良いのか疑問にも感じていました。今週の学習で、分解の際に使える代表的な切り口について理解できたことは大きな収穫です。 どの手法を試す? まず、層別分解では、全体を定義した上で「~である/~でない」や年齢、性別、地域などの基準で部分集合に分類します。次に、変数分解では、売上を「単価×販売数量」、利益率を「利益÷売上」といったように、ある事象を構成する変数で分解して考えます。そして、ある事象に至るプロセスごとに分け、その中でいずれの段階に問題があるのかを明確にする方法もあります。 ユーザー離脱の理由は? 現在、会社の採用サイトではユーザーの離脱が多く、目的のエントリーに至らないという課題があります。そこで、ユーザーがどの段階で離脱しているのかを把握し、改善策を検討するために、プロセスの分解を用いてユーザー行動を細分化し、どのフェーズにボトルネックが発生しているか、また何が離脱の原因となっているのかを明らかにしようと考えています。 どの改善策が効果的? 具体的には、ゴールデンウィーク明けに課題に取り組む予定です。まずはプロセスを分解し、各段階で確認できる数字を抽出します。数字に極端な変動がある部分を特定し、そこから仮説を立て、問題の洗い出しを行います。私は、頭を整理するために紙やノートに図を書きながら進める方が分かりやすいため、その方法で取り組むつもりです。

データ・アナリティクス入門

実践で磨くデータ解析の魔法

分析の本質に迫る? 今までは、適当にグラフを選んだり、大まかな平均値を算出するだけで十分だと考え、自分なりの解釈でデータを加工していました。しかし、今回の学びを通じて、目的に応じた最適な計算方法や加工方法が存在することを再認識し、そのおかげで分析力が格段に向上することを実感しました。たとえば、ヒストグラムを用いることでデータの散らばりを可視化できることや、代表値として単純平均だけでなく、加重平均や幾何平均を算出することで、より精密な分析が可能になる点を学びました。演習やグループワークを通じ、目的や仮説に合わせた手法の使い分けの大切さも理解できました。 データ分析をどう工夫する? グラフの作成やデータの計算には苦手意識がありましたが、今回の学びをもとに自主的に練習していくことの重要性を感じました。普段はアプリやITツールを使って数字をまとめ、それをもとに売上報告や予実管理を行っていますが、今後は自分で実際にデータを加工し、深く掘り下げてみようと考えています。たとえば、顧客アンケートの分析においては、単純平均だけでなく、満足度のばらつきを把握するための計算に挑戦したいと思います。また、先週の学びも取り入れ、単にデータを加工するだけではなく、具体的に何を調べたいのか、目的は何かをしっかりと意識しながら実践していきます。 グラフ選びの裏側は? なお、今週の事前準備ではヒストグラムを選んだ方が多かったと感じましたが、他のグラフを試してみた方もいらっしゃるのではないかと考えています。

データ・アナリティクス入門

データ分析で未来を切り拓くために

データ分析の目的を見直す データ分析の手法として、データの収集、加工、そして発見に焦点が当たりがちですが、何のためにデータ分析を行うのか、その目的が最も重要だと認識しました。そのために必要なデータ項目を選定し、それに基づいてデータを収集する習慣や仕組みを作る必要があります。ただ業務をこなすだけでは、将来に向けた効果的な分析ができず、特に自社の業務データはインターネットで入手できないため、自社内での心がけが欠かせません。 本当の売上分析とは? 私の業務では、データを集計して資料に記載することで終わることが多く、本来の意味での分析に至っていないと感じました。自部門の売上高を集計することが多いのですが、他部門との比較を通じて本当の意味での売上分析を行う必要があり、もっとオープンな視点での比較を考える必要があります。また、落札情報などを蓄積し、市場の相場観も併せて分析することが求められています。 有用なデータの収集方法とは? 現在、社内では中期経営計画の策定時期が来ており、過去の売上や競合他社の状況、他部門との比較を行いながら、データ分析を活用したいと考えています。しかし、データが社内に散在しており、有用なデータが収集しにくいという課題があります。そのため、将来を見据えてどのようなデータが必要かを社内で議論し、データ分析がしっかりと根付く職場環境を作りたいと思います。データを蓄積するためのフォーマットを作成し、社内メンバーがそれを保管・活用できる仕組み作りも進めていきたいです。

リーダーシップ・キャリアビジョン入門

他者の成長を支える私の価値観発見

何を大切に感じた? 過去の仕事を振り返ることで、自分が何を大事にし、価値を感じているのかを言葉にすることができました。私は、自分が関わることで他者が能力を発揮し、周囲から認められるような成果や成長が見られることに価値を感じていると気づきました。ただ能力を活用するだけでなく、社会的評価を得ることも重要視しているというのは、自分では気づいていなかった点で、良い発見となりました。 部下の成果はどう? 部下が成果を出し、成長することで会社や周囲から認められるようにサポートすることが、私にとって価値のあることです。店舗としての成果が求められていますが、その中でも部下が成果を出せるようにしたいと考えています。来店客の担当をある程度私が決められるため、部下が成果を出しやすい仕事の割り振りを行い、仕事を進める中でより良い成果を出すための方法を一緒に考えていきたいと思っています。 進捗はどう確認? 定期的な進捗確認の打ち合わせを設ける予定で、頻度は2週間に1回を考えています。部下本人は数字目標を掲げていますが、それ以外の目標がイメージしにくいようなので、まずは数字目標にどれだけ近づいているか、また、そのための行動ができているかを確認していきたいです。想定している部下は、他人の行動を真似るのは得意ですが、自分で考えたり新しい発想をするのは苦手だと見ています。そのため、打ち合わせの中でその苦手部分を強化するか、もしくはロールモデルを広く探し、糧にできるように働きかけていきたいと考えています。

戦略思考入門

時間を操り効率を最大化する方法

どこに集中すべき? リソースには限りがあるため、どこに集中し、どこにエネルギーを注ぐのかを選択する必要があります。そのための選択ポイントとして、まずは明確なゴールを設定しましょう。これにより、何を選び、何を捨てるべきかの指針が得られます。次に、数値的根拠を示すことで、判断を主観や経験則に頼らず、客観的に評価することができます。加えて、成果を定量的に測定することで、継続的な取捨選択が可能になります。最後に、ゴールと数値的根拠に基づき優先順位を明確にすることが重要です。この「選択と集中」によって、限られたリソースを最大限に活用できるのです。 自動化はどう進化? 選択の結果が正解かどうかは未来にしか分かりませんが、「自分なりの判断基準を持って選択すること」が大切です。本来、「時間」と「品質」はトレードオフの関係にあると言われますが、バックオフィス業務の自動化はこれを克服する可能性を秘めています。自動化により、業務の効率化による時間短縮、人的エラーの軽減での高品質化、さらには成果物の品質の均一化が可能になります。 業務整理で変化は? 優先順位の高いものにリソースを集中させるためには、まずは現在の業務を圧縮する必要があります。これにより、業務の増加に対応するためにも、業務整理を行い、何を優先すべきかを再確認することが重要です。時間というリソースを有効活用するためにも、生成AIや自動化ツールに関する知識を深め、その活用を通じて、重要な業務に集中できる環境を整えたいと考えています。

戦略思考入門

データが照らす捨てる勇気

なぜ実践が苦手? この講座では「戦略における捨てるを身につける」という内容が特に印象に残りました。以前からその考え方に触れていたものの、講座を通じて実際の場面でこの手法を適用する必要性を改めて実感し、自分自身がその実践を苦手だと感じていた理由にも気づかされました。 批判とデータの意義は? 「捨てる」という行動は周囲からの批判を恐れるケースが多く、自分がこれまで培ってきたものを変えるリスクと捉え、避けたくなる部分があると感じていました。しかし、グループディスカッションでは「捨てる」の代わりに、定量的なデータに基づいて選択するというアプローチが紹介され、トレードオフの視点を取り入れることで、これまでの取り組みを付け加える形で活かす方法もあるのではないかと学ぶことができました。 職場での製品挑戦は? 自身の職場では、従来の製品とは異なる新たな製品開発が求められており、「新しいことを行う=変化する」がしばしば批判の対象となる状況があります。そこで、まずは客観的なデータに基づいた判断が重要だと感じています。今後は、常にデータで分析できる体制を整え、メンバーにその意識を共有して、定量的な視点から取捨選択を行いながら業務を進めていきたいと思います。 連携の必要性は何? 仕事は一人で完結するものではないため、日常的なコミュニケーションの重要性を実感しています。皆さんも、周囲との連携を図るために日頃からどのような工夫をされているのか、ぜひ教えていただきたいです。

リーダーシップ・キャリアビジョン入門

覚悟と支援で引き出す自主性

エンパワメントとは? 今回の講座を通じ、エンパワメントについて深く学ぶことができました。エンパワメントは、目標を明確に伝える一方で、メンバー自身に遂行方法の選択を委ねることで、自律性を促進し、育成を図るリーダーシップ技法であると感じました。環境整備や必要な支援を行いながら、メンバーに権限と責任が与えられる仕組みは、業務の質を向上させるために非常に有用です。 どこまで介入すべき? また、エンパワメントを実践する際には、リーダー自身も一歩引かず、必要に応じてしっかりと介入する覚悟が求められる点が印象的でした。向いている仕事と向かない仕事を見極め、ミスが許されない業務や緊急性の高い業務には慎重に対応する必要があることを学び、リスク管理の重要性を実感しました。 目標はどう決める? さらに、目標設定と共有のプロセスにおいては、メンバーが納得し主体的に取り組めるよう、背景や意義を十分に伝えることが不可欠だと感じました。成功基準を具体的に示し、誰が何をいつまでにどのように行うのか、6W1Hの視点で計画を立てることで、各自の役割が明確になり、業務全体への理解が深まると考えます。 リーダーはどう在る? 今回の学びは、メンバーの自主性を引き出すと同時に、必要なフォローや支援を欠かさないリーダーシップのあり方を再認識させるものでした。今後は、これらのポイントを実際の業務に活かし、メンバーが主体的にタスクに取り組みながら互いに成長していける環境作りに努めていきたいと思います。

クリティカルシンキング入門

一読必見!グラフで伝える魅せ方術

情報の見せ方は? 相手に分かりやすく情報を伝えるための視覚化ポイントとして、グラフの使い分けが重要であると学びました。時間軸での変化を示すには縦棒グラフや折れ線グラフを、要素の違いを際立たせるには横棒グラフを、また内訳を表す場合には帯グラフを用いるといった使い分けが有効です。さらに、フォントや色の選択が印象に大きく影響するため、デザイン面にも留意する必要があると感じました。 スライドのコツは? また、スライド作りにおいては、メッセージとの整合性を意識し、相手に情報を探させることなく、流れに沿って丁寧に示す工夫が求められます。これにより、相手に直感的に内容が伝わる構成が実現できると実感しました。 良文の条件は? 一方、ビジネスライティングでは、良い文章の条件として、目的を明確にし、読み手の立場に立った内容作りが大切です。現代は情報量が多いため、最後まで読んでもらえるようなアイキャッチや文章の硬軟の調整、読みやすい体裁に配慮することが求められます。メールや社内外の資料作りでも、これらの視点を意識して文章を作成していきたいと考えています。 計画の整理方法は? さらに、年度末のレビューや来年度の行動計画の資料作成においては、今年度のデータを俯瞰し、問題の抽出時にはピラミッドストラクチャーで思考を整理する方法が有用でした。スライドでは、メッセージとの整合性に加え、相手が余計な情報を探さなくても理解できるように、情報を順序立てて示す点に特に注意して作成しています。

「方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right