マーケティング入門

顧客志向の新たな価値創造に挑戦

顧客志向の重要性を再確認 マーケティングにおいては、何よりも顧客志向が重要であることを改めて学びました。「売れる仕組みを作ること」がマーケティングの定義とされていますが、その根底にあるのは顧客の存在です。すなわち、自社の商品を単に知ってもらうだけでなく、その魅力を感じてもらうことが重要です。 社員満足度向上の方法とは? 自社のサービスを将来的に営業や外部収益に結びつけるために活用するのはもちろんのこと、顧客を社内外のメンバーやステークホルダー全員と捉えることによって、課やオフィスの従業員満足度を高めることにもつながるのではないかと考えます。 全ての人を顧客と捉える意味 自分に関わるすべての人を「顧客」として捉え、その方々に満足していただくためには何が必要かを考えることが大切です。そのためには、その人たちのニーズを正しく把握し、偏った考えに陥らないよう、広い視野や様々な視点、そして高い視座を持って物事を捉えることを意識したいと思います。そして、そのニーズに応える、あるいはそれを上回るサービスを提供できるスキルを磨くことを心掛けたいです。

データ・アナリティクス入門

思考プロセスで本質に迫る

プロセスの意味は? 今週は、一連の思考プロセスに沿って問題解決のステップを学びました。それぞれのステップで重要な点を復習する機会をいただき、事象を把握する際に、すぐに手法に飛びつくのではなく、しっかりとプロセスを踏むことが実は近道であると実感しました。迅速に本質へ近づくため、その手間を惜しまない姿勢を大切にしたいと感じています。 徹底の課題は? また、問題解決策にたどり着き「これを徹底しよう」と意気込んだ場面でも、大規模な職場においては徹底が困難であるという新たな課題に直面しました。この単科で学んだ内容を活かすためには、その後の徹底方法、すなわちどのようにして人が動くのかという視点も欠かせないと考えています。思考プロセスは数字の分析だけでなく、さまざまな状況に応用できる点が魅力的だと改めて感じました。 本質を追うには? 徹底ができていない現状(What)に対して、なぜ徹底できないのか(Why)をインタビューなどを通して探ることで、新たな気づきを得たいと思います。今後も、この思考プロセスを駆使し、問題の本質を追究していきたいと考えています。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

データ・アナリティクス入門

偏差値では語れない実感

平均に秘めた疑問は? 教育現場では、単純平均ばかりが重視されがちです。標準偏差を基に算出される偏差値は、詰め込み教育の象徴とされることもありますが、標準偏差を無視すると真実を見誤る可能性があることを、ぜひ周囲にも伝えていきたいと思います。 統計教育の難しさは? 私は高校で数学の教員を務めており、新課程において数学の統計分野が必修となったため、標準正規分布まで教えることになりました。この単元は多くの数学教師にとって教えにくいと感じられがちですが、実際に社会人になってから最も役立つ知識であると実感しています。実際、校内の制度を変更する際には、正規分布に基づくデータを示すことで説得力を得た経験があります。 定量分析に挑戦すべき? また、私は生徒の成績データを扱う部署に所属しており、統計の知識はすでに成績データの分析に活用されています。一方で、生徒募集に関しては、一般企業での営業活動に例えられるように定性データが中心で、定量データの解析が進んでいません。そこで、データ収集の方法を見直し、次年度から定量的な分析を強化していこうと考えています。

データ・アナリティクス入門

目的意識と比較で開く新たな発見

目的意識はどこに? まず、分析の目的を考えることが当たり前だと感じられるかもしれませんが、私にとっては大きな気づきでした。これまで、データを可視化すれば自然と新しい発見や傾向が見えてくると漠然と思い込んでいました。しかし、まず「何のために」分析をするのかという目的意識がなければ、求める結果は得られないということに気づかされ、仕事への取り組み方が変わると感じました。 比較の意義は? また、分析=データの可視化というイメージだけでなく、その基本は「比較」にあるという新たな発見もありました。具体的な比較対象や基準を設定することで、意思決定がしやすくなります。たとえば、安全衛生に関するタスクでは、法令遵守の状態を確認するために法規制と社内ルールを比較し、どのレベルで何を行うべきかを整理する必要があります。 方法はどうする? 今後は、具体的な方法はまだ模索中ですが、「目的」と「比較」を意識し、どのような結果を得たいのかを明確にしながら取り組んでいきたいと思います。仕事に迷いが生じたときや上司への説明・説得が必要な時に、この考え方を生かしていきます。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

データ・アナリティクス入門

実践で磨く仮説思考の秘訣

正しい仮説はどう作る? 仮説を正しく構築することで、検証マインドが高まり、ビジネスの精度向上につながります。そのため、適切な仮説を立てるスキルの習得が求められます。また、「what」「where」「why」「how」といった視点を意識することで、課題の把握や解決方法の糸口を見つけることが可能です。 販売分析の秘訣は? 日々の販売分析においても、仮説思考を取り入れるよう努めています。現場担当者が実務の中で肌感覚で感じている課題について、定量的・定性的な両面から評価し、チームとして合意のもとで進めることが重要です。 仮説は独立すべきか? また、仮説は一つに絞らず、対策や重要性、影響力を十分に考慮した上で、業務への反映が必要です。複数の可能性を見極めながら、最適な対策を検討していく姿勢が大切です。 改善プロセスは? 具体的なプロセスとしては、まず現場担当者が感じている課題を確認し、併せて実績数値などのデータを基に問題点を洗い出します。その上で、いくつかの仮説を立て、裏付けとなるデータや対策案を検討しながらプロセスの改善を進めています。

クリティカルシンキング入門

数字で掴む新たな視点と成長

数字分解の大切さは? 今回の講義では、数字を分解して考える方法や、さまざまな切り口を試し、定義を明確にしてMECEの考え方を適用する手法を学びました。普段あまり意識してこなかった視点から、改めてデータを多角的に検討することの大切さを実感し、新たな気づきを得ることができました。特に、数字に苦手意識があった私にとって、グラフに少し足して割合を示すなどの工夫が、問題点の発見を助けてくれると感じました。 採用データは何見る? また、採用に関する応募者のデータを、自身で分解し、多角的に検討する重要性にも気づかされました。これまでは、採用媒体の営業担当からの数字の共有を受けるだけでしたが、自分でデータを操作し、さまざまな属性からボトルネックを見つけていく試みは非常に有意義でした。今後は、これまでの採用データを自分なりに細かく分解し、現状の強みや弱みを洗い出して、次の募集掲載の対策に生かしていきたいと考えています。 継続的な対策は? 一度の検討に留まらず、継続的にデータを分解し、数字に基づいた対策を立案できるよう努めていきたいと思います。

クリティカルシンキング入門

固定概念をひらく数字探求

どんな切り口がある? データの扱いや切り口を変えることで、見え方や結果が大きく異なることを学びました。「本当にこれだけなのか?」と問い続ける姿勢の大切さを痛感しています。また、思い込みや自身の仮説だけで分析しないよう、注意が必要だと感じました。特に、細かくデータを刻む手法は非常に印象深く、発見の連続でした。 定性と数字はどう違う? 普段は定性的な業務が中心で、データを扱う機会が少なかったので、新しい視点を得られたことに新鮮さを感じました。その一方で、数字をもっと活用すれば、業務の見え方が変わる可能性を実感しました。これまで「この業界はこの数字」という固定概念にとらわれていた部分以外の新たな数字や切り口を探る必要があると考えさせられました。 どんな指標が必要? この授業を通じて、定性的な課題をどのように数字に置き換えるか、またどんな指標を使えば良いのかを改めて考える機会となりました。定性的なものを数字化する際には、それに見合う指標や基準が不可欠であり、その処理方法についても他の受講生の意見や感想を参考にしながら模索していきたいと思います。

戦略思考入門

フレームで拓く戦略の見える未来

現状はどう整理する? 戦略を考える出発点は、まず内部と外部の現状を俯瞰して整理し、正しく把握することにあります。実際の事例から、私たちは目の前の出来事や直近の経験に影響され、偏った見方をしてしまうリスクがあると実感しました。そのため、フレームワークを活用して抜けや漏れなく現状分析を行う重要性を再認識しました。 業界状況をどう見る? また、PEST分析を用いて業界全体が直面する状況を整理し、その上で3C分析を通じて今後の勝ち筋を見出すことに大きな可能性を感じました。中長期的な戦略を立案する過程では、バリューチェーン分析を活用し、自身が所属する製造部門が提供しているユニークな価値について深く考える機会となりました。 分析実践はどう進む? 具体的には、PEST分析を実施して税制の変化などの業界に影響を及ぼす要因を整理し、その影響を製造部門における各プロセスに反映させる方法を検討します。また、バリューチェーン分析の実践例を参考にしながら、どのような付加価値が生み出されているのかを体系的にまとめることで、今後の戦略立案に役立てたいと考えています。

クリティカルシンキング入門

考えを整理する力が劇的に向上

仕組みの効果は? 「ピラミッド・ストラクチャー」の仕組みは、メインメッセージや結論、主張とそれを支えるキーメッセージの作成プロセスであり、私にとって考えを整理する際の質とスピードを向上させる学びとなりました。具体的には、イシューを特定し、論理的枠組みを考え、主張を適切な根拠で支えるというステップが重要です。 なぜ的確な指示? 私の職務では、支部組合員から寄せられる意見に対して、後輩の作成した回答案に修正指示を出さなければなりません。その際、「ピラミッド・ストラクチャー」を活用することで、本質を捉えた結論とその根拠を打ち出すことが可能になり、より的確な指示が出せると感じています。 結論の見直し方は? 結論を導いた後には、「自分の結論は本質を捉えているか」「その結論を支える根拠は明確で、不足はないか」と常に客観的に見直すクセをつけています。もちろん、限られた時間の中で業務を遂行する必要があるため、思考に時間をかけ続けるわけにはいきません。しかし、上記の思考方法を活用し、質とスピードの向上を目指してトレーニングを続けていきたいと考えています。

クリティカルシンキング入門

振り返りで気づく「もう1人の自分」

感覚と経験の再評価は? 私は職業柄、論理的に考えているつもりでしたが、講義を通じて実際には感覚や経験に頼って判断していることが多いことに気づくことができました。この気づきを得られたことは良かったと思っています。また、「もう1人の自分でチェックする」という方法は、どの場面でも活用できると考えているので、これを常に意識しながら業務に取り組みたいと思います。 ITを活用した提案力をどう高める? ITを活用した顧客への提案や課題解決の方法でも、ロジックツリーやMECEといった手法は非常に有効だと感じました。これらを意識して取り組むことで、頭の中を整理するだけでなく、設計資料や提案資料を作成する際にも説得力を高められると思います。 問題解決力の向上の鍵は? 日々の業務では様々な問題が発生しますが、ロジックツリーを用いることで課題を全体的かつ階層的に把握し、本質的な課題を特定しようとしています。研修を通して、自分自身の制約や偏った考え方に気づかされたことを教訓に、視点・視座・視野を意識し、もう1人の自分で常にチェックすることを心がけたいです。

「方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right