データ・アナリティクス入門

データ分析に固執しない学びの本質

効果検証を改善するには? 今週の講義内容は、すでに実践していることをさらにブラッシュアップして継続する必要があると感じました。特に効果検証については、ノイズを排除しきれずにABテスト自体が難しい場合や、施策の実施数が多く、全ての分析を物理的に行うことが困難な場合があります。 デジタル時代のデータ分析とは? デジタル領域では、質よりもスピードが重要な場面が多くありますので、完璧なデータ分析に固執しすぎないことも心掛けたいです。データ分析はあくまで結果を出すための一つの手段に過ぎず、それ自体を目的としないことが大切だと再認識しました。 仮説思考を磨くために何が必要か? また、仮説思考を鍛えるためには、思考力を磨くことが最も重要だと感じました。情報を集めたり事象を分析しているだけでは、思考の精度は上がりません。本当に必要な情報を見極めるために、何のために情報を集めるのかを自分の頭で考えるトレーニングが必要です。 行動で成果を生み出す方法は? さらに、答えを持っている人に対して自分の仮説を試してみることも大事です。不正解でも良いので、アウトプットする機会を増やし、トライアンドエラーを繰り返すことが重要です。成果は行動することでしか生み出せないため、とにかく積極的にアクションを起こすことが求められます。

リーダーシップ・キャリアビジョン入門

リーダーシップとコミュニケーションの実践例

キャリアをどう理解する? 「キャリア」や「リーダー」とは何か、という疑問が本講座を通じて少しずつ解明されてきました。 ロールプレイからの学びとは? LIVE授業でのロールプレイでは、上司役としてフィードバックを行う際、相手にとって望ましくない結果をどう伝えるかが課題となりました。仕事は常に「対:人」であり、相手の価値観、得手・不得手、仕事の仕方はすべて一人ひとり違います。そのため、相手をよく知り、よく見ることが重要だと実感しました。今後も相手に応じた適切な支援を心がけていきたいと思います。 エンゲージメント向上の手法は? 私は、メンバーとの日常的な関わりだけでなく、全社的なエンゲージメント向上プロジェクトにも参加しています。そのため、リーダーの関わりがどのようにメンバーのモチベーションに影響するか、日々のコミュニケーションがいかに重要かを強く認識しています。これらの気づきを社内で共有し、組織の活性化に貢献していきたいと考えています。 メンバーの対話をどう促進する? 関わるメンバー(上司も含めて)と対話し、互いの価値観をオープンにできる機会と雰囲気を創ることが重要です。メンバーの経験や価値観に応じて適切な支援ができるよう、今回の学びを振り返りながらリーダーシップを実践していきたいと思います。

リーダーシップ・キャリアビジョン入門

キャリアをデザインするための振り返り術

キャリアアンカーとは何か? キャリアアンカーが自分の中にもあり、周りの人々それぞれに異なる形で存在することを前提とする意識が必要だと感じました。そして、キャリアを自分でデザインするという発想を常に持ち続けることが大切だと思いました。 仕事の見直しはどう進める? 次に、仕事の棚卸しや環境変化の見直し、そして仕事そのものの見直しを定期的に行っていくことが重要です。四半期ごとに仕事を振り返り、キャリアサバイバルの考え方で担当業務を整理することが効果的です。 また、自分自身だけでなく、部下のキャリアアンカーをうまく引き出し、そのキャリアに必要な仕事を割り振ることも考えなければなりません。自身のキャリアステートメントを明確化することも一つの目標です。 キャリアサバイバルの実践法は? もうすぐ現職場に着任して3ヶ月が経つので、月末には仕事の棚卸しを行い、言語化してみようと思います。さらに、自身の目標管理シートをただの作業と捉えず、キャリアサバイバルの考え方で書き出し、キャリアに対するステートメントとして明確にしていくことが重要だと感じます。 部下へのキャリアアンカーの共有 部下にもキャリアアンカーを意識させるため、四半期ごとに1対1で面談を行い、その考え方を共有し、実践していきたいと思います。

データ・アナリティクス入門

実務に活かすMECEで新視点発見

問題解決の難しさに気づく 実践演習を通じて、私は問題特定の際に表面上の情報だけを処理しがちで、問題解決のステップを踏むことが難しいと理解しました。これにより、課題を適切に提起できることが限られていることにも気づかされました。MECEやロジックツリーという言葉は知識として持っていましたが、具体的に活用したことはありませんでした。しかし、MECEはデータを重複なく、漏れなく整理する考え方で、実務でも非常に有効であると感じ、直ちに活用したいと思いました。 新視点での顧客セグメンテーション 実務において、顧客セグメンテーションを考える際、これまでは年齢、性別、居住地などの従来の基準に頼っていました。しかし、MECEの考え方を用いることで、新しい視点からセグメンテーションを検討し、より優れた分析ができる可能性を探りたいと考えています。 新手法の有効性は? 新たな顧客セグメンテーションの手法として、まず取引頻度と勤務先の業種という二つの基準を用いて分析を進めてみます。この二つでセグメンテーションを行い、既存の分析手法と比較することで、その有効性を検証したいと考えています。現時点では、取引頻度や業種に関するデータの分布を十分に把握していないため、まずはどの基準で分類を行うのか、データを確認していきたいと思います。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

データ・アナリティクス入門

数値を超えて感じる学び

比較基準はなぜ? 率の比較を行うことで、比較の基準を統一できることが分かりました。実践におけるクリック率やコンバージョン率の違いを、単に数値だけで良し悪しを判断するのではなく、プロセスを分解して問題点を洗い出す視点が重要だと感じました。その結果、新たな気づきや解釈が生まれる可能性があることも実感しました。 幅広い思考はどう? また、原因を探る際には「思考の幅を広げる」ことが大切であると分かりました。抽象的な要素を積極的に取り入れ、そこから掘り下げる手法が効果的であるという点も大きな収穫です。 集計活用はどうする? 実際の業務でどこまで活かせるかは未知数ですが、今回の経験を基に、依頼されたデータの集計を活用して分析に取り組んでみようと考えています。職場の方からもアドバイスをいただき、お支払いされた方の年代や件数などから比率を算出し、それらを抽象的な観点で分析することで、販売活動に活用できるデータへと繋げられないか検討していきたいと思います。 分布の謎は何? まずは抽出したデータから比率を計算し、年齢などの属性が支払いにどのように影響しているのか、その際の母数の設定についても検討していきます。その後、なぜこのような分布になるのか、概念的な原因を考え、さらに深く掘り下げてみたいと考えています。

データ・アナリティクス入門

明確な未来への第一歩

学びの整理はどう? 講座で得た学びを整理し、ありたい姿を描きなおすことで、これまでぼんやり感じていたことが明確になりました。今回の作業を通じ、今後の目標や現在抱えている課題、そしてその課題を解決するために実行すべきことが具体的に見えてきました。 次に何をすべき? また、受講を終えた今、次に取り組むべきことがはっきりしてきたと強く実感しています。仕事と並行しての学習が大変な時期もあり、あと少しで済ませようという気持ちにもあったものの、まだ足りない部分や今後への危機感を改めて感じることができました。そのため、次のアクションについてじっくり考える貴重な時間となりました。 経験はどう活かす? これらの経験は、モチベーションを保ち正しい方向性を模索する上での振り返りとして、大変意義があると感じています。たとえば、フレームワークの知識は、仕事で内部環境や外部環境を分析する際に具体的な切り口として役立っています。 自己研鑽はどうする? さらに、受講後も土曜日に翌週の課題に取り組む学習習慣を継続し、自己研鑽の時間を確保していきたいと考えています。加えて、実際の分析作業で不安を感じるExcelの使い方についても、実践を通して学びたいと思っており、まずは関係する講座を探すところから始めるつもりです。

データ・アナリティクス入門

実践で磨く問題解決力

効果検証はどうする? 問題解決のフレームワーク(What, Where, Why, How)に沿って思考を進めることで、ただ思いつきで施策を導入するのではなく、実施した施策の効果をきちんと検証できます。また、このフレームワークを活用しA/Bテストを実施することで、もし施策がうまくいかなくても別のアプローチを試し、再度検証を重ねることが可能です。こうした手法により、より効果的な解決策を見出し、継続的な改善へとつなげることができます。 問題の原因は? グループ店舗においては、業績の高い店舗と低い店舗との違いを明確にすることが重要です。たとえば、低実績の店舗では、顧客への働きかけが不足しているのか、またはスタッフのスキルに問題があるのかといった原因を順を追って分析することで、真の問題点を特定できます。このプロセスにより、場当たり的な対応に終始せず、効果的な解決策を集中的に立案・実行することが可能になります。 実務で活かす方法は? 私は現在、グループ店舗の実績向上を目指し、これまで学んだ問題解決のフレームワークを実務で活用しています。そのため、今月上旬を目標に各店舗の問題点を分析し、仮説を立てた上で対応策を検討します。そして、来年度に向けた対策スケジュールの策定と実行に向けた準備を進めていく予定です。

クリティカルシンキング入門

伝える力を鍛える、実践のステップ

主張はどう伝える? 相手に自分の考えを効果的に伝えるためには、主語と述語の関係を正しく表現し、状況や相手に応じて適切な理由づけを行うこと、さらに主張とそれを支える根拠を組み合わせて伝えることが重要であると学びました。 理由づけは本当に適切? 私はこれまで、相手を説得する際に「理由づけが相手に適切かどうか」という点についてあまり意識していなかったと感じています。今後は、「自分の主張を伝えるための理由づけが相手の問題意識に対して適切かどうか」を意識しながら話を進めたいです。 指示は誰にどう伝える? 自分のチームメンバーに仕事の指示を出したり、ミーティングを実施したり、上司に仕事の報告を行ったりする際、わかりやすく伝える力が向上するのではないかと感じています。伝わりやすい文章になっているか、相手に対して適切な理由づけがされているか、ということをチェックする習慣を持ち、主張と根拠の順で手順を踏んで考えるように心がけたいです。 休日前の点検はできる? また、週に二回程度、休みの日の前に仕事の内容について指示書を書いています。その際には、読み手に対してわかりやすく書けているか、伝えるべき内容が相手に適切かどうかをチェックしながら書くことで、伝える力や思考力を鍛える訓練を続けていきたいと思います。

データ・アナリティクス入門

目的再確認で拓く未来

なぜ目的は大切? 分析とは、比較を通して物事を評価するプロセスです。まず、データ収集や具体的な分析を始める前に、はっきりとした目的を設定することが不可欠です。目的が定まらない分析は、結果として次の行動に結びつかず、単なる数字遊びになってしまうリスクがあります。 どのように対象を選ぶ? そのため、目的を明確にし、適切な対象を選ぶとともに、多角的な観点から正しく比較することが大切だと考えます。データ分析に入る前に一度立ち止まり、目的に立ち返る余裕を持つことが、成功への第一歩となります。 どのように傾向を見る? 具体的には、顧客の属性データやアンケート結果から傾向を読み取り、次月以降の施策に役立てています。また、自身の働き方に関しても、どの業務にどれほどの時間を費やしているかを他者と比較し、業務効率の向上を図っています。 どうやって振り返る? このため、毎週金曜日に10~15分間の業務棚卸しの時間を設け、週次および月次での振り返りを実施しています。さらに、1on1などの機会を通じて、業務時間の使い方について他者から意見を聴取し、比較することで、より実践的な改善策を模索しています。一方で、対顧客の分析に関しては、常に目的を再確認し、施策ありきの分析にならないよう注意を払っています。

データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

デザイン思考入門

スピードでカタチに!学びの実験

前職はなぜ意義ある? 前職ではSEとしてプロトタイプを作成し、フィードバックを受け取るサイクルを繰り返していたことを思い出しました。現在の業務では同じような機会は少ないですが、その経験を活かし、使用中のツールの改修や新規作成に取り入れていきたいと考えています。また、モノ作りのみならず、業務フローの改善にも生かす意欲があります。 フィードバックの鍵は? 実践までは至っていませんが、実践演習を通して、まずアイデアを形にし、ユーザーからのフィードバックを受けるそのプロセスの繰り返しが、よりユーザーが求めるものを作り出す鍵であると感じました。さらに、プロトタイプの種類によって得られるフィードバックが異なるため、何を目的にするのか、現在のフェーズはどこにあるのかを踏まえた上で、プロトタイプの作成と検証を進めることが重要だと考えています。 スピードはなぜ大切? とにかく、形にすること、そしてスピードが大切であると実感しています。形にすることで自分の考えが整理され、ユーザーやメンバーからコメントやフィードバックを得やすい状況が生まれます。そのサイクルをスピーディーに回すことが成果につながると感じました。また、ユーザーテスト前に評価基準を設定しておくことで、課題を見失わない工夫も大切だと実感しました。

「実践」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right