デザイン思考入門

試して見つけた、本当の気づき

プロトタイプの効果は? 新規事業開発の現場では、従来、テキストや紙芝居を用いてコンセプトや提供価値を磨く方法を意識していました。しかし、議論をより活性化させるために、あえてプロトタイプを作成する有用性を学びました。また、毎週のグループワークでのディスカッションを通じて得られる新たな気づきも非常に意義深いと感じています。 感情と真因の探究は? 今後は、自身が関わるサービス開発で次の2点を実践したいと考えています。まず、ユーザーとしての体験から得られる心理的変化に注目し、表面的なニーズだけでなく、感情面に踏み込むことで利用者の情動を捉えること。次に、顧客の悩みの奥に潜む思考や本能、その背景の制約条件を探ることで、根本的な課題や真因を見極めることです。デザイン思考においては、この2つのプロセスを徹底することが、結果的に発想や試作品作成の近道になると考えています。ただし、議論を進めるためのツールとしてプロトタイプは有効なケースもあるため、状況に応じて活用することが重要です。 アイデアはどう生む? また、アイデア発想のプロセスについても挑戦してみたいと思います。アイデアは、具体と抽象の深さ、多角的な視点、そして顧客視点の掛け合わせによって生まれるものです。基本的な流れとしては、現状の課題を洗い出し、KJ法で構造化し、課題を絞り込んだ上で、SCAMPER法などを用いてアイデアを発散。さらに抽象度を上げて再度発散させ、最終的に収束させるというプロセスを磨いていきたいと考えています。

リーダーシップ・キャリアビジョン入門

自分の強みと向き合い、リーダーシップを再定義した学び

自分のキャリア・アンカーを再認識 大きな喜びを感じた仕事を思い出す作業を通じて、専門性や技術を追求しながら常に挑戦し続けたいという自身のキャリア・アンカーを再認識しました。また、キャリア志向質問票による診断結果もほぼ変わらなかったことから、自己認識に確信を持つことができました。 誰もが成果を出せる仕組みとは? さらに、成し遂げた成果に対する社会的評価も求めていることが明らかになりました。WEEK 04のグループワークで、製品の開発過程において属人化をなくし、誰がやっても同じ結果になるよう仕組み化を進めている件について議論しました。その際、技術分野では属人化できる部分とそうでない部分の棲み分けがあっても良いのではないかという意見を頂き、これに安堵した自分の根源を理解しました。この経験を通じて、「この人にしかできない」という領域も大切にしていきたいと強く感じました。 自分に合った管理スタイルを探る 一方、キャリア志向質問票の診断結果では、全体管理コンピタンスの得点が最も低く、これは自分の価値観として存在していないことが確認できました。そのため、無理して全体管理を追求する必要はないと俯瞰することができました。 目指すべきリーダーシップ像は? 今週の学習を踏まえると、自分が目指したいリーダーシップ像は、「専門領域でのメンバーと大きな成果を成し遂げ、その感動と賞賛をメンバーと共有すること」であることがわかりました。このリーダーシップ像を軸に、小論文を完成させたいと思います。

マーケティング入門

産業用コネクタ新製品開発の秘訣を学ぶ

振り返りで学びを深めるには? 6週間の振り返りを行うことで、記憶から消えかけていた内容を再度確認し、学習成果をさらに深く身に着けることができました。しかし、学んだことを実践に生かさなければ定着しないため、今後も継続して学習し実践していきたいと考えています。ただし、現時点では実践に移すためにはまだ不十分な部分もあり、さらに学びを深める必要があると感じています。 チームで市場を切り拓くには? 今回の学びを自社の産業用コネクタの新製品開発に活かしたいと考えています。まずは市場をしっかりとセグメンテーションし、競合分析を含む市場環境を確認した上で、何をすべきかをチームと共有しながら進めたいです。自分ひとりの視点に頼らず、チームで意見を言語化することで、様々なアイデアが出てくることがわかりました。このアプローチを自社のマーケティング業務にも取り入れ、チームで取り組みたいと思います。 新製品開発への具体的ステップ 具体的なステップとしては以下の通りです: 1. 狙う市場をセグメンテーションする(例:半導体製造装置、バッテリー製造装置、ビルディングオートメーションなど) 2. セグメントごとの市場ニーズを調査する 3. 調査したニーズに基づいた新製品のアイデア出し 4. 競合分析を行う 5. 新製品コンセプトを決定し、顧客へのヒアリングを実施 6. ヒアリング結果を基にブラッシュアップ 7. 製品化 これらのステップを通じて、自社の新製品開発を成功させるための具体的な計画を立てていきます。

データ・アナリティクス入門

探求の視点:問題解決の新たな扉を開く

プロセスをどう分けるか? 問題の原因を追求する上で、プロセスを分けることにより、より精度の高い分析や仮説構築ができることを学びました。また、GAILの解説にあった「思考の範囲を広げてみる」ことは新しい発見でした。仮説構築や原因究明を行う際、自社や自組織の問題に目が向きがちですが、社外の要因にも原因があるのではないかという視点が新たな切り口を与えてくれることを実感しました。早速、日々の業務にも逆説的仮説を取り入れてみたいと思います。 評価分析の注意点は? 今週の演習で出てきた評価分析は、これまでも実践してきましたが、今後も活用していきます。注意点として、評価項目の設定や重みづけに気を付ける必要があると感じました。評価項目や重みづけによって、評価対象者によって結果が異なってしまうことがあるので、実際の業務では自分一人で評価項目を設定せず、他者の視点や意見を取り入れて設定し、評価を行っていこうと思います。 次の四半期に向けた準備 今月で第三四半期が終了し、来月から第四四半期が始まります。10月頭にあるQuarter Business Reviewに向けて、今四半期の結果の分析や問題点、改善が必要なポイントを洗い出し、次の四半期へのアクションプランを策定するつもりです。チームや各メンバーにおいて傾向があるので、What、Where、Why、Howの各ステップを意識し、分析、原因究明、改善策を見出していきます。各分析結果は組織および該当の個人に共有し、フィードバックをもらおうと思います。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

クリティカルシンキング入門

データ分析の一手間で見える世界

データをどう加工すべきか? 与えられたデータをどのように加工すればよいか、その考え方を学ぶことができました。大切なポイントは以下の3つです: 1. 与えられた表をそのまま見るのではなく、まず加工を考える。 2. 絶対値ではなく相対値でもデータを見る。 3. 一手間加えてグラフ化し、視覚的にわかりやすくする。 データ分析の仮説立て方とは? これらを実行する上で重要なのは、仮説を立ててデータを分解することです。特に、MECE(漏れなくダブりなく)な分解を習得することが求められます。 可視化で何を達成できる? 私は、売上や営業スタッフ一人ひとりの実績やシェアを見ることが多く、その際にフィードバックを行う機会があります。ただ結果を振り返るだけでなく、もう一歩踏み込んだフィードバックができるように、データを可視化したいと考えています。可視化する際には、様々な切り口でデータを分解し、仮説を立てて分析します。もし仮説が結果に結びつかなくても、トライ&エラーを繰り返して原因を追求します。 今後の目標は? 今後の目標は以下の通りです: - 毎月の数字の振り返りの際に、特定エリアの商圏分析と購買年齢層を比較し、問題の明確化と特定を行い、さらに原因追求のプロセスを明確化する習慣をつける。 - 営業スタッフへの数字振り返り資料を、次回の会議時にはグラフ等を用いて改訂してみる。 - 月間の実績確認において、各カテゴリーごとにチェックするだけでなく、その都度気になる切り口でMECE分解を行う。

戦略思考入門

時間を操り効率を最大化する方法

どこに集中すべき? リソースには限りがあるため、どこに集中し、どこにエネルギーを注ぐのかを選択する必要があります。そのための選択ポイントとして、まずは明確なゴールを設定しましょう。これにより、何を選び、何を捨てるべきかの指針が得られます。次に、数値的根拠を示すことで、判断を主観や経験則に頼らず、客観的に評価することができます。加えて、成果を定量的に測定することで、継続的な取捨選択が可能になります。最後に、ゴールと数値的根拠に基づき優先順位を明確にすることが重要です。この「選択と集中」によって、限られたリソースを最大限に活用できるのです。 自動化はどう進化? 選択の結果が正解かどうかは未来にしか分かりませんが、「自分なりの判断基準を持って選択すること」が大切です。本来、「時間」と「品質」はトレードオフの関係にあると言われますが、バックオフィス業務の自動化はこれを克服する可能性を秘めています。自動化により、業務の効率化による時間短縮、人的エラーの軽減での高品質化、さらには成果物の品質の均一化が可能になります。 業務整理で変化は? 優先順位の高いものにリソースを集中させるためには、まずは現在の業務を圧縮する必要があります。これにより、業務の増加に対応するためにも、業務整理を行い、何を優先すべきかを再確認することが重要です。時間というリソースを有効活用するためにも、生成AIや自動化ツールに関する知識を深め、その活用を通じて、重要な業務に集中できる環境を整えたいと考えています。

データ・アナリティクス入門

ChatGPTで学びの視点を拡張する方法

ロジックツリーとMECEの限界は? ロジックツリーやMECEを使って考えると、一人での作業では思考に癖が出て、洗い出しが不十分だったり、偏った視点になりがちです。しかし、CHATGPTを活用することで、自分とは異なる視点から「漏れなく」洗い出せる可能性が高まることを実感しました。実際、学習の際にCHATGPTを利用した結果、より早く自分なりの答えに近づくことができました。 定量分析の視点の活用法は? 定量分析の5つの視点については、普段何気なく行っていたことが体系化されていることに気づきました。データ分析を行う際には、どの視点が最適か常に立ち止まって考えるようにしたいと思います。 CHATGPTの効率的な利用方法は? また、問題を洗い出す際にCHATGPTを活用することで、様々な視点から効率的に問題点をリストアップできるようになりました。以前はこの作業に多くの時間を費やしていましたが、CHATGPTの登場により時間的コストが大幅に削減されました。学習ではコストと見合った洗い出しが重要だと教えられましたが、短時間で漏れなく洗い出すことを優先すべきだと感じています。 独自プロンプトの効果は? さらに、問題の洗い出しをスムーズに行うために、自分独自のプロンプトを考案しました。問題洗い出しの場面では、そのプロンプトを使って多様な視点から問題をリストアップすることを徹底しています。また、このプロンプトは従業員にも共有し、同じような場面で活用してもらうようにしています。

アカウンティング入門

数字で学ぶ!本気の経営戦略

利益と費用の違いは? カフェのケーススタディを通して、費用がP/Lのどの科目に該当するかや、売上総利益、営業利益、経常利益、税前当期純利益、当期純利益といった5つの利益の違いが明確になりました。 事業準備はどう進む? 事業を始める際は、まずどのようなコンセプトで展開するか、ターゲットとなる顧客を明確にすることが大切です。その上で、どんな準備を行い、どの程度の費用をかけるかというストーリーをしっかり作り込むことが、利益を生み出し事業継続に寄与するという視点を得ました。 価値本質はどう捉える? また、事業の価値の本質を見失わず、同業他社との比較を通じて自分の事業を客観的に把握することの重要性も感じました。これにより、コスト削減などの具体的な改善策を検討する必要性が理解できました。 施設比較はどんな結果? 今後のアプローチとしては、まず複数の施設がある場合、各施設のP/Lを並べて比較し、施設ごとの特徴を把握する方法を取ります。全体的な課題と各施設ごとの課題を抽出し、それぞれに対応するコスト削減案を策定することで、利益改善を目指していきたいと考えています。 どの課題に注目? 具体的には、先月の月次P/Lを確認し、赤字部門の課題を洗い出して対応策を講じるとともに、前年度同月との比較を行い、黒字部門でも利益が低下している理由を分析して改善策を考えました。これらの検討結果を基に、収支改善に向けた次月の行動計画を作成し、メンバーと共有の上、実際に動いていく所存です。

クリティカルシンキング入門

データ分析で見える新たな可能性

データ分解の視点とは? 事象をより深く理解するためには、分解が重要です。分解の際は、Who、When、Howなどの視点から試行錯誤が必要です。一つの切り口に固執せず、様々な切り口から数字を確認することが求められます。このとき、切り口は「もれなくダブりなく」を意識しながら進めましょう。 直感に頼らずデータ確認 切り口が見つかったら、それに基づいてデータを直感的に分析します。しかし、直感的な推測は一度疑い、データで確認することが大切です。結果が期待外れであっても、それは失敗ではなく、次のステップへの前進です。 新しい視点で見る方法は? ウェブデータの分析でも、新しい切り口での分析が効果的です。切り口は自動的に決めるのではなく、MECEを意識して分解していきます。ある切り口が有効であっても、他にないかを考え、複数の切り口でデータを分析します。 チームで進める業務の確認 業務においても同様に、チーム全体での作業がもれなくダブりなく行われているか確認します。また、責任範囲を異なる切り口で考えてみると良いです。 マンスリーレポートにどう反映? ウェブデータの分析に関しては、全体を定義した上で新しい切り口をMECEを意識して今週から来週の間に実施し、その結果をマンスリーレポートに反映します。この過程では、全体を把握した上でチームメンバーと議論し、より良い切り口を探してみましょう。 なお、チームの業務に関しては、まずは思考実験を行うことから始めてみてください。

データ・アナリティクス入門

「データ分析でつかんだ達成感」

問題解決のアプローチは? 問題に対応する際には、まず何を明らかにしたいのかをしっかりと理解することが重要です。結論のイメージを持ちながら取り組むことで、ストーリーが明確になります。 データ分析の重要な視点とは? データを分析する際には、実数と比率の両方を確認しましょう。これは、母数の違いによって見え方が大きく変わるためです。また、効果的なグラフを用いることで、分析結果を直感的に理解しやすくすることができます。事象に応じて最適なグラフの表現方法を選びましょう。 考えを整理するコツは? 課題に取り掛かる際には、問題点を整理しましょう。考えたことや思い浮かんだことをメモし、それをグループ化して整理します。必要に応じて一旦立ち止まり、考えを再度整理することも大切です。優先順位を決め、効率的に進めていきましょう。 Copilotを活用する方法とは? また、Copilotと相談しながら思考を整理するのも有効です。特に難しい問題に直面した際には、飛躍した考えやアイデアを得る手助けになります。 クリティカルシンキングをどう磨く? 比較資料についても、実践を重ねながらベストな可視化方法を見つけていくことが求められます。クリティカルシンキングを意識し、しっかりと身につけることが成功への鍵となります。 AIを使って新しい視点を得るには? AIを活用することも一つの手段です。AIで壁打ちをすることで新しい視点を得たり、考えの整理が進んだりするでしょう。

データ・アナリティクス入門

振り返りで切り拓く未来

集客前提を疑ってみる? スクールの課題に対する対応優先順位を誤ってしまいましたが、そこには「また間違った集客を繰り返しそう」という隠れた前提がありました。まずは、この前提を改めることが必要であり、その上で真に解決すべき課題を特定する必要性を感じました。また、生徒データの切り口に関するブレストの中で、「ああそうだ、その観点も必要だ!」との意見があったことから、広い視野を持って落ち着いて検討する重要性を再認識しました。 数字の分析意図は? 分析したい項目がそもそも十分に取得できていない場合もあるため、あらかじめあきらめる部分もある一方で、見るべき数字の優先順位はしっかり決めて取り組む意向です。具体的には、イベントアンケート結果や申込者のデータについて、単に分析するのではなく「何が知りたいのか?その目的は何か?」と自分に問いながら進めるようにしています。 アンケート分析の意義は? 各イベント終了後には、アンケート結果と申込者属性の分析を行い、その内容を報告する必要があります。その際、以下の点を意識して業務にあたっています。まず①どの数値項目を優先的に見るのか、次に②その数値が他のイベントと比較して問題ないか、さらに③比較する際には条件を揃えているか、そして④関係者に報告する際には自分の仮説をセットで伝え、議論を促すかという点です。 特に②以降の実施が十分ではないと感じているため、限られた時間の中で箇条書きなどで条件を明確にし、意識しながら取り組むことを心がけています。

「結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right