クリティカルシンキング入門

切り口を変える学びのヒント

どの分け方が効果的? データを分解する方法について、実際に手を動かしながら学ぶことができました。表からグラフを作成する際、従来は区切りのよい数字(例:5刻みや10刻み)で分類していましたが、特徴が際立つ分け方を検討することが大きな学びとなりました。 なぜ来場数が減少? また、博物館の来場数の減少原因を分析する中で、たとえ特徴的な傾向が見えても、その結果だけに安心せず「本当にそうなのか?」と別の切り口から検証することの大切さを実感しました。 どこでつまずいた? ①お問い合わせの原因分析では、顧客がどこでつまずいているかを考える際に、MECEで学んだ「プロセスで分ける」手法が活用できそうです。どの工程で問題が多いのかを明確にすることで、根拠に基づいた対応策を検討することが可能だと感じました。 要望整理で新発見? ②要望リストの整理に関しては、従来は顧客の要望が多い順に整理していましたが、顧客の属性や規模など、別の切り口でも考えることで新たな気づきが得られ、優先順位を決める際に役立つ情報が得られると感じました。 仕様調整はどう扱う? ③仕様調整については、システム上対応可能なものの、影響範囲が大きく判断が難しい課題を抱えています。来週のミーティングに向け、MECEの三つの切り口を活用して影響範囲を漏れなく洗い出す予定です。優先度の高いこの項目から着手し、ミーティングまでに発生する可能性のある事象を整理し、そのうえで課題として発生しそうな点も含めた資料を作成します。 1on1で何を伝える? また、①と②に関しては、1on1の場で上司に学びを伝える予定です。特に、①については、まず自分用のメモを作成し、顧客がどのプロセスにいるのかを把握してから対応策を検討する訓練を行います。

アカウンティング入門

バランスシートで見つけた経営のヒント

資金調達はどうする? 貸借対照表は、資金調達方法と資金の使い方を示す重要なツールです。自身の事業コンセプトを実現するためには、まず「資金調達方法」として、負債(流動負債・固定負債)と自己資金の二点を意識することが必要です。負債の場合、元金や利子の返済が求められるため、確実な現金の確保が不可欠です。 資金の使い方は? また、資金の使い方は、1年以内に現金化される流動資産と、1年以上かかる固定資産に分けられます。事業コンセプトに合わせて、それぞれの比率が変動することを念頭に、各分類の金額の比重を確認すると、経営判断の材料にしやすくなります。 割合とバランスは? 貸借対照表の示す各項目の割合をしっかり捉え、事業や業種に応じた適正なバランスを検討することが大切です。たとえば、毎月の返済が求められる場合、返済分を利益として確保するキャッシュ創出が必要になります。自己資本率や流動比率などの数値を参考に、どの状態が適正かを判断できるようにすることも重要です。 実践で活かすには? さらに、資金調達方法や資金の使い方が具体的にどのように事業に貢献しているのか、詳細に考えるとより実践的です。融資などによる資金調達や、運転資金、設備投資への活用など、事業ごとに最適な比率が求められるため、理想的なバランスを実現するためのステップを考察することが重要です。 会計分析はどう? また、月次会計の説明や決算報告書の分析において、B/Sの仕組みが理解できると業務の全体像が明確になり、事業コンセプトとのつながりを説明しやすくなります。実際の数値の動きを分析し、先輩からのフィードバックを受けながら分析能力を向上させることも、学びを深める上で有益です。さらに、関連する書籍を読んで知識の幅を広げることも、今後の経営判断に役立つでしょう。

マーケティング入門

顧客体験×情緒価値で勝つ法則

6週間の学びの成果は何か? 6週間の学びを通して、実例演習やグループワークでマーケティングに対する理解が深まりました。特に「機能的価値」と「情緒的な価値」を学ぶことで、競合他社に勝つためには、商品にまつわる経験に+αを加えた情緒的価値が最も有用な差別化になると認識しました。結果として、マーケティングは顧客にポジティブな体験を提供し、自社の優位性を築くための重要な位置づけであると実感しました。 ライブ授業の課題は何か? 一方、ライブ授業では大局的な視点が不足することがあり、これは直近の課題と捉えています。今後は、エンドユーザーである患者の動きや、業界団体、医師会、厚生労働省などの動向を定期的に観察し、流れの変化が関係団体や企業にどのような影響を与えるか、またはどのようなアクションが必要かを検討していきます。 体験設計はどう進む? 具体的な取り組みとして、まず自社製品の機能的価値と情緒的価値を整理し、顧客にとってポジティブな体験を設計するために、ユーザーの声を丁寧に聴いて内容を整理します。さらに、顧客が持つ認識(パーセプションマップ)の理解を深めるため、インターネット調査や営業同行での顧客インタビューを通じ、定量的・定性的な情報を収集し、競合分析を経て自社の優位性を見出し、その軸に基づいた体験の創出を目指します。 マクロ視点はどう評価? また、マクロな視点を養うため、情報の入手経路の模索と整理も行います。具体的には、SNSで患者に関連するキーワードを検索し、口コミやアンケートの結果をチェックするほか、業界団体や医師会の定期総会に出席して情報を収集します。そして、厚生労働省の公式発表や新聞記事に注目し、そこから得られる情報を元に大局的な動向を把握することで、迅速な対応策を検討できる体制を整えていく考えです。

クリティカルシンキング入門

切り口変えれば未来が拓ける

事象を分解する意味は? ある事象を理解するためには、まずその事象を細かく分解してみることが有用であると感じました。一つの視点だけでは捉えきれないため、複数の切り口から分解することで、より深い理解へとつながります。また、現在の切り口に安住せず、他の可能性を常に問い直す姿勢が、新たな発見に結びつくと考えています。ここで、MECE(漏れなく、ダブりなく)という原則を徹底することの重要性が改めて意識されます。もし切り口に漏れや重複があれば、事象を正確に捉えることが難しくなってしまうからです。 財務状況はどう分析する? このアプローチは、例えば顧客の財務状況を分析する際にも非常に参考になると思います。財務諸表であるB/S、P/L、C/Fを、複数の視点からチェックすることで、顧客の財務状態をより具体的に理解することが可能になります。また、顧客理解を深めるには、事業内容や流通構造、業界の動向、さらには競合との比較も欠かせません。それぞれの項目について、どの要素が利益率低下に影響しているのか、例えば原価率の高さや売上の低迷、その背景にあるコスト増加などを詳細に分析する必要があります。 未来策はどう見つける? さらに、物事を分解する手法は、現状の課題把握だけでなく、将来の解決策を検討する際にも役立つと実感しています。今後は、この分解の手法をより一層活用し、現在の理解を深めた上で、効果的な解決策を模索していきたいと思います。 具体的な取り組みとしては、5月中に少なくとも1つ、理想は2つ以上の業界について、業界に属する上場企業のIR資料や関連書籍を参考にしながら業界分析を行う予定です。その際、業界を単一の角度ではなく、複数の切り口で分析すること、そしてMECEの原則を意識して、学びを実践に結びつける機会にしたいと考えています。

データ・アナリティクス入門

問題解決のプロセスで成果を出す方法

「Why」と「How」の探求は? 問題解決の4つのプロセスのうち、最後の2つである「Why(なぜ)」と「How(どのように)」について考えました。問題の原因を明らかにするために、プロセスを分解し、どの段階に問題があるのかを特定します。そして、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠を持って選定します。 学びをどう生かすか? これまでの学習でも、都合の良いデータばかりを集めないことや、仮説思考で柔軟に考えることの重要性を学んできました。同様に、「How」についても決め打ちせず、複数の選択肢を洗い出し、判断基準を設け、重要度で比較して解決策を選ぶようにします。 A/Bテストの手法とは? また、A/Bテストについても学びました。複数の案を条件を揃えて比較し、評価する手法です。複数の案を実際に試し、反応を確認しながら仮説検証を繰り返して評価します。ある事例では、スピードが重要で3ヶ月も待てないため、同時にランダム表示を選択しましたが、条件を揃える理由に納得しました。 黒字化への挑戦は成功? ちょうど今週、この学びを生かす機会がありました。自部門の数字が黒字にならない原因を考える場面があったのです。これは長年の問題で、まだ解決に至っていません。今週の学びを基に、原因や解決案を決め打ちせず、プロセスに分解し、複数の仮説を立て、根拠となるデータを示しながら解決策に向けた対策を考えていきたいと思います。 残業時間の原因は何か? 最後に、自身の月々の残業がなぜ80時間に達してしまうのかについても、4つのプロセスを用いて考えてみることにします。さらに、Q2で記載した問題の原因について、ある程度仮説を立てています。それらの仮説が正しいかどうか、データを用いて分析することを早速始めてみます。

データ・アナリティクス入門

データの見方が変わる!定量分析の魔法

定量分析の視点をどう活用する? 定量分析の5つの視点(1. インパクト、2. ギャップ、3. トレンド、4. ばらつき、5. パターン)を学びました。データを漫然と眺めるのではなく、これらの視点で見ることで効率的に示唆を得られると感じました。特に、平均値を取る際に「標準偏差(データのばらつき度合)」という視点をこれまで考えたことがありませんでした。同じ平均値でも「ばらつきがある」か「ばらつきがない」かでデータの意味合いが変わります。今後は標準偏差も併せてチェックしていきたいと思います。 データ比較時のポイントは? 売上やサービス利用者数などのデータを前年度と比較する際には、定量分析の5つの視点を意識して数字を見るように心がけます。また、特定月における新規受講者や解約者を年代別に分析する際、これまで表に落とし込むことは行っていたものの、グラフ作成は少なかったです。今後はヒストグラムなどのグラフを活用し、ビジュアルで傾向を把握できるようにしたいと思います。これはチームメンバーにも促していきたいです。 チームでの視点共有は? まずは、学んだことを言語化し、チームメンバーと共有することが重要です。データの分析もチームメンバーと一緒に行う際、「Aさんはトレンドがないか」「Bさんはばらつきがないか」といった具合に、各メンバーに特定の視点で見る役割を依頼するのも良い考えだと思います。これにより、チーム全体として5つの視点を網羅することができます。 グラフ化で何を検証する? 最後に、各月のサービス利用者の新規受講率や解約率のデータが表として存在していますが、まずは先月のものを目的に応じてグラフ化し、理解の速度や深度にどのような違いがあるのか、グラフから意味ある示唆を導き出しやすくなるのかを検証したいと思います。

マーケティング入門

顧客の心をつかむ体験価値の秘訣

付加価値はどう生まれる? Week.01からの流れを通して、「付加価値」を付けることの重要性がよく理解できました。単に表面的な内容ではなく、人の根源的な欲求に訴える付加価値を創造することで、より確固たる優位性が得られると感じました。つまり、顧客のニーズを的確に捉え、「何を売るか」を明確にすること、さらには、提供する価値を創造し、市場での強みとなる要素を磨いていく重要性を実感しました。 体験はどう見つける? また、「何を売るか?」「誰に売るか?」といった論理的な分析に加え、顧客が実際にどのような体験を求めているのか、カスタマージャーニーやエスノグラフィーなどを通じてその声を拾い続ける姿勢の大切さも学びました。商品やサービスの魅せ方が、その提供価値を左右することは言うまでもなく、細部にまでこだわり、最後の隅々まで追求することが求められます。 お客様の心はどう感じる? さらに、顧客の心の動きを考えることや、体験を設計する意義を改めて意識しました。たとえ、表面的な「勝ち負け」や「ワクワク感」だけでなく、実際に来店された際のお客様の気持ちや、その後の体験に注目することが、長く印象に残る価値を創り出すと実感しました。そうした体験価値を発見し、くすぐる方法を常に模索していく姿勢が、差別化に欠かせないと感じています。 学びはどのように整理する? 最後に、アウトプットに入る前に、自分自身で学びの要点を整理し、確認するルーティンの重要性にも気づかされました。時間や予算に追われる中でも、何となく流されるのではなく、学びをフレームワークにまとめるなどして、論理的かつ計画的に反映できる仕組みを作りたいと思いました。これからも、今回の学びを活かし、顧客が本当に価値を感じる体験の創出に努めていきたいと考えています。

データ・アナリティクス入門

データ分析で未来を変える振り返り

分析の本質をどう理解する? 「分析は比較なり」という言葉に触れ、データ分析の本質を理解しました。特に分析の重要な要素を短く表現していると感じ、講座の印象に残っています。具体例では飛行機の比較がありましたが、欠損部分を答えと思ってしまいました。この講座を通じて、すぐに正しい結論を導けるよう、考え方を習得したいと思っています。 分析前の準備は何を意識する? 次に、分析前の「目的」と「仮説」が重要であることを学びました。これまでは仕事の中でしばしば「分析しておいて」と言われ、提案書の内容やグラフの色選びで迷うことが多くありました。これらの悩みの原因は、分析の目的や仮説の前提が欠けていたことに気づきました。この気づきにより、目の前の作業に集中するのではなく、前提意識を持って取り組むことで、提案書の質やクライアントへの説得力が大きく改善されると感じました。 理想の分析へどう向かう? 「言語化・教訓化・自分化」の実践においては、理想の姿を描く際に不足を感じ、反省しました。本講座を通じてこれを意識的に学び、活かしたいと思います。また、内部環境や外部環境のデータ分析でこれらの考えを活用できると感じました。 必要なデータはどう見つける? まず、データ収集の場面では、市場やクライアントの会社を分析時に、どのデータが必要か考えることができます。クライアントに提供するデータについて考える場面にも役立つでしょう。 提案書作成で重要なポイントは? 分析前に重要なのは、「目的」と「仮説」であり、提案書へ表現する際には、明確な目的に基づいて、適切なグラフや色の選択を行うことが大切です。また、分析を進める間にも都度結果を確認し、方針の変更がないかチェックすることで、目的に沿った貴重な分析を行いたいと考えました。

戦略思考入門

実践で掴む経済の法則

法則理解はどう? ビジネスの法則を正しく理解し、それを自らの武器とすることが大切です。また、事業経済性のメカニズムやその前提条件を把握することが、実践に結びつく基盤となります。 実践の意義は? まずは、自分で手を動かし試してみることが重要です。単に理論を覚えるだけでなく、補足情報も取り入れながら実践することにより、より深くメカニズムを理解できます。さらに、時代やビジネス環境の変化も考慮に入れ、シナジー効果や個別の要因が複雑になりすぎないよう、定石やメカニズムに例外があることを常に意識する必要があります。 環境変化はどう? また、現代は指数関数的な急激な環境変化が進んでいる時代です。テクノロジーの進展に注目し、関連する法則や概念を理解した上で、組織全体で取り組む姿勢が求められます。 経済性の本質は? 経済性については、規模の経済性、範囲の経済性、習熟効果、ネットワークの経済性の4点を正しく理解し、状況に応じた効果が発揮できるかを見極めることが必要です。 変革の兆しは? たとえば、自動車業界では電動化やIT化、AI化といった流れが進んでいます。自分の業務領域でも、まずは基本的なメカニズムを体験し、試すことで、表面的には見えにくいが将来的に大きな変革をもたらす可能性がある部分を把握しておくことが重要です。 技術革新は進む? そして、まず必要なテクノロジーをしっかり整理することから始めます。従来、提供していた機能に対してテクノロジーを取り入れてきた定石を見直し、今後はテクノロジーの中に自らの機能が組み込まれる可能性を意識するべきです。その上で、主導権を握るためのシナジーや独自性を発揮できる方法を模索し、変化に流されるのではなく、持続的な成長を実現していきたいと考えています。

データ・アナリティクス入門

チーム力で見つける新しい発見と成長

6週間の振り返りと学び 6週間の総まとめをLive授業で振り返り、演習として実践することができました。時間は限られていましたが、ブレークアウトルームでのディスカッションが非常に有意義でした。他のグループの発表やチャット欄での投稿から、同じ題材でも切り口や発想が異なる点も興味深かったです。 アウトプットの重要性を実感 アウトプットの重要性と他の人を巻き込み、様々な視点で物事を考えることの重要性や効果を実感しました。データ分析は週次のチームミーティングでの前週の結果分析や当該週のアクションプラン策定に活用しています。本講座で学んだ考え方や進め方をチームメンバーにも浸透させるため、常にアウトプットを意識していきます。 分析と仮説構築の大切さ 特に以下の3点を大切にしていきます。 1. 分析とは比較すること 2. 仮説の引き出しの持ち方 3. 仮説構築に各種フレームワークを活用できること 新しいスタイルの効果は? アウトプットを通じて自分自身にも自然に身につけ(体得する)状況にまで持っていければと思います。 Q2に記載した場面での活用を考えていますが、その進め方には特に注意を払いたいです。最初に自分の分析結果を示してからメンバーの意見を聞くのではなく、前週の結果やトレンドを全員で確認し、その上でどのような仮説や原因が考えられるかをチームで検討します。そして、その上で自分の分析結果や仮説を共有することを意識して取り組みたいと思います。 得られる効果への期待 このスタイルにより、以下の効果が期待できます。 1. バイアスをある程度取り除ける 2. 自分自身が思いもつかなかった仮説を認識できる これまでのスタイルから変えていくことで、どのような結果が得られるのか楽しみです。

デザイン思考入門

AIと語り合うアイデアワーク

生成AIで何を学んだ? 試作のグループワークを通じて、多くの受講生が高度な生成AIを活用している様子を目の当たりにし、私自身にとって大きな学びとなりました。アイディアを言語化したり、絵にすることに抵抗がなく、むしろ自らビジュアル化を楽しむ私にとって、このような生成AIの活用には改めて驚かされました。最新のテクノロジーを適切に用いることで、高いレベルのアウトプットが迅速に実現できるという点に、非常に刺激を受けました。 AIとデザイン思考はどう? 試作の過程で、生成AIが具体的なプロダクトデザインにおいて非常に得意であることが実感できました。一方で、デザイン思考を単なる思考法として用いる場合、抽象的なアイディアの整理や言語化において、AIがどこまで役立つのかという疑問も湧きました。企業の経営課題や公共サービス、交通、住居、教育、金融、軍事といった様々な領域でデザイン思考を応用することを考えたとき、AIをどのように効果的に活用すべきか、改めて考える機会となりました。グループワークの中で、他の受講生からは「AIでは生み出せない発想を引き出すためにAIと対話する」という意見も伺い、多様なアプローチが考えられることに大変興味を覚えました。 課題で得た自信は? デザイン思考入門の学習を通しては、毎回の課題回答や振り返りが、言語化のトレーニングとして非常に役立ったと感じます。業務での活用を意識し、各課題に対して即座にスピード感を持って回答することで、クライアントとのやりとりを想定した実践的なエクササイズにもなったと思います。これにより、自分の言語表現力が磨かれるとともに、生成AIの能力に対する素直な感動と共に、実際に試してみたいという気持ちが芽生えたのは、今回の学習の大きな成果といえるでしょう。

データ・アナリティクス入門

実践で分かる分析の極意

基本原則は理解できた? 今週は、ライブ授業を通して6週間の学習内容を実践演習で総まとめしました。初めに、1週目から学んだ基本原則に基づく比較分析や、データの種類に応じたグラフの加工・表現方法を改めて確認しました。また、データ分析を始める前に、目的や仮説の重要性についても再認識する機会となりました。 プロセスは理解できた? さらに、問題解決のプロセス(What・Where・Why・How)や分析のステップ(仮説構築・データ収集・データ分析・仮説検証)を実践する中で、やみくもな分析を避けることや、アウトプットのイメージを持ってデータ収集を行う大切さを痛感しました。 キャンペーン分析は進んでる? 私の業務では、電子マネー決済によるキャンペーンの分析を行っており、決済データをもとに利用者の定性情報や行動パターンを把握することで、決済回数や決済金額の増加に向けた施策の提案や効果検証を進めたいと考えています。 目的は明確になった? 現状の課題は、データ分析の目的や分析する内容が関係者の間で曖昧になっている点です。そこで、まずは分析の目的や問いを明確にし、何を分析するのかを関係者間でしっかりと共有・可視化する必要があります。目的や分析対象が定まれば、データ収集を実施し、その結果をもとに仮説構築を進めます。仮説構築の際も、重点的に検討すべき点を明確化し、関係者と共有していくことが重要です。 施策は具体的になった? また、現状分析では、各種フレームワークを活用しながら、問題点やその原因、そして打ち出す施策を具体的に明確にすることが求められます。最後に、データ収集および仮説検証の結果は、関係者にわかりやすく説得力のある形で伝えられるよう、適切なグラフを選んで可視化し、報告していく予定です。

「表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right