データ・アナリティクス入門

データ分析で未来を切り拓くために

データ分析の目的を見直す データ分析の手法として、データの収集、加工、そして発見に焦点が当たりがちですが、何のためにデータ分析を行うのか、その目的が最も重要だと認識しました。そのために必要なデータ項目を選定し、それに基づいてデータを収集する習慣や仕組みを作る必要があります。ただ業務をこなすだけでは、将来に向けた効果的な分析ができず、特に自社の業務データはインターネットで入手できないため、自社内での心がけが欠かせません。 本当の売上分析とは? 私の業務では、データを集計して資料に記載することで終わることが多く、本来の意味での分析に至っていないと感じました。自部門の売上高を集計することが多いのですが、他部門との比較を通じて本当の意味での売上分析を行う必要があり、もっとオープンな視点での比較を考える必要があります。また、落札情報などを蓄積し、市場の相場観も併せて分析することが求められています。 有用なデータの収集方法とは? 現在、社内では中期経営計画の策定時期が来ており、過去の売上や競合他社の状況、他部門との比較を行いながら、データ分析を活用したいと考えています。しかし、データが社内に散在しており、有用なデータが収集しにくいという課題があります。そのため、将来を見据えてどのようなデータが必要かを社内で議論し、データ分析がしっかりと根付く職場環境を作りたいと思います。データを蓄積するためのフォーマットを作成し、社内メンバーがそれを保管・活用できる仕組み作りも進めていきたいです。

リーダーシップ・キャリアビジョン入門

振り返りで見える信頼と成長

信頼して任せていますか? 実行段階では、メンバーに任せる際に過干渉にならないよう気をつける必要があります。進捗状況の確認や細かいフォローに気を取られず、信頼し任せること、またメンバーが頼りにしやすい雰囲気づくりを心がけることが大切です。 予期せぬ事態はどう対処? 予期しない事態が発生した場合は、まず事態を収めた上で、今後に向けた改善策を検討します。その際、リーダー自身の見落としについては率直に認め、個人を追及するのではなく、組織全体の構造的な問題に目を向けることが求められます。 フィードバックの意味は? フィードバックについては、良い点と改善すべき点の両面を伝えることが基本です。特に改善点は曖昧になりがちなため、具体的な指摘をすることを心がけたいと思います。 振り返りのポイントは? また、実行した結果をしっかりと振り返る責任があります。振り返りの際は、まず出来事や状況を客観的に見つめ、次に自分自身の考えや行動を問うようにします。その上で、得られた気づきや教訓を次に活かすための具体策を導き出すことが重要です。 モチベーションは高まる? メンバーのモチベーション向上には、「尊重する」「目標設定をする」「フィードバックを行う」「信頼性を高める」といったポイントが効果的です。実際、私は「感謝や称賛をしてもらったとき」にモチベーションが上がると感じています。みなさんはどのように感じるか、ぜひ意見を聞かせていただければと思います。

アカウンティング入門

数字で紐解くビジネスのヒント

会計の重要性は? 今週の学びを通じて、会計は経理部門だけのものではなく、すべてのビジネスパーソンにとって不可欠な視点であると実感しました。特に、損益計算書(PL)と貸借対照表(BS)の違いや役割を学びながら、数字から事業の健全性、リスク、改善点を読み取る力の大切さを理解しました。 経営の言葉って? また、「会計の数字は単なる記録ではなく経営の言語である」という言葉が強く印象に残りました。これまでなんとなく受け取っていた財務情報を、今後は具体的な考察材料として活用していきたいと感じています。 具体策はどうする? 具体的には、人事部門での人件費管理や採用・育成にかかるコストの説明、そして経営層との打ち合わせにおいて、感覚的な話ではなく具体的な数字や財務の視点を交え、説得力のある提案を行うことを目指しています。そのため、まずはPLやBSの読み取りに慣れ、意味を「理解しているつもり」ではなく、自分の言葉で正確に説明できるように練習していく予定です。日々のニュースや会社の資料など、目にする数字にも注意を払いながら、少しずつ実践していきたいと思います。 企業像はどう見る? また、PLとBSが示す「企業の姿」が、たとえば社風や労働環境、リーダーシップなどの定性的な部分までどこまで把握できるのかという疑問もあります。加えて、人事という立場から「人」に関わる投資がどのように財務に反映されるかについて、他の受講生の意見もぜひ聞いてみたいと思います。

戦略思考入門

選択と集中が生む、企業変革の鍵

慣例を捨てる意識を再確認 事業や業務において「捨てる」ことは、「慣例」や「定型」に拘らないことだと意識していましたが、今回の学習を通じて無意識のうちに「慣例」や「定型」に捉われていたと気づかされました。個人で「捨てる」ことは容易ですが、組織として「捨てる」ことは意識的に取り組む必要があり、論理的なストーリーを立てて進める必要があると再認識しました。「ムダじゃない?」や「意味はない」では他の社員は納得してくれず、腹に落ちないことを肝に銘じておきたいと思います。 プロジェクトへの想いと捨てる決断 IT業界では参画したプロジェクトに長期間携わることが多く、顧客やプロジェクトに対する想いが強くなりがちです。事業領域を選択と集中(捨てる)する際には、参画メンバーの心情も考慮する必要がありますが、メンバーの意識や想いを重視することはできません。トレードオフを念頭に置きながら、検討・計画・実行していきたいと思います。また、客観的な判断を行うために数値をベースにして取り組んでいく必要があります。 トレードオフの検討にどう向き合う? トレードオフを検討するにあたり、売上高や利益、一人当たりの売上高や利益、投下コストなどの生産性指標を把握し、社員にも示せるように準備を進めます。数値をベースに社員の意見も取り入れた上で判断し、上層部への提案を行っていくつもりです。現在、中期計画や短期事業計画の策定に携わっており、事業領域の検討にこれらを取り入れて進めていきます。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

リーダーシップ・キャリアビジョン入門

エンパワメントで輝く自律リーダー

エンパワメントとは何か? エンパワメントという言葉は以前から耳にしていましたが、今回、具体的な意味や方法について学ぶ機会がありました。目標達成に向け、組織の構成員が自律的に行動するためのリーダーシップ技術として、エンパワメントの重要性を実感しました。 共有と支援の秘策は? 具体的には、まず目的やビジョンを共有し、対象者の状況を把握した上で、適切な仕事を依頼するというステップがあり、必要に応じて支援を行うことがポイントです。これらのプロセスでは、常にコミュニケーションが不可欠であると再認識しました。 整理で何が変わる? また、実際の業務においても、無意識にエンパワメントの考え方を取り入れていた部分があったと感じますが、今回改めて整理することでその意味をより深く理解できました。今後は、目標やビジョンをしっかりと伝え、相手に理解・納得してもらうことを重視したいと考えています。その上で、各メンバーの状況に応じた仕事の依頼や、適切なフォローも行っていく所存です。 チーム内でどう調整? まずは、コミュニケーションの時間を意識的に確保し、メンバーの特性やモチベーションを理解することから始め、それぞれに適した目標や計画の策定に取り組んでいきたいと考えています。一方で、仕事の優先度が高くないメンバーや、価値観の異なるメンバーに対して、どのように目標を共有し計画を立案すればよいのか、その具体的な方法を知りたいという思いもあります。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

アカウンティング入門

バランスシートで未来を読む

資金活用の意味は? 今週は、資金の使い道や事業への投資の適切さについて学びました。特に、ある視点から企業のバランスシート(B/S)を通して経営者の意図を読み解き、資産の有効活用や安全性に関する考察を深めることができました。固定資産と純資産のバランスが企業の安全性にどのように影響するかを理解し、B/Sに経営者の将来ビジョンが反映されている点を学ぶことで、投資判断の基礎知識を一層強固なものにできたと感じています。 比較検討の要点は? また、業務においては、投資先企業と自社のバランスシートを比較検討する中で、良い点と改善点を洗い出すことの重要性を実感しました。これにより、投資先企業の財務状況を総合的に把握し、投資判断の精度を高めることが可能になると考えています。 成長戦略はどう? さらに、投資先企業の成長を支援するための具体的な戦略の立案や、自社の投資戦略改善へのフィードバックの獲得にも取り組むことができそうです。最終的には、投資先企業の成長が自社の利益にもつながる相乗効果を目指していくというビジョンが明確になりました。 継続的な検証は? 決算書やファイナンス資料を活用し、投資先企業と自社のバランスシートを継続的に分析する中で、良い点や改善点を具体的に把握することができました。これらの情報を基に、定期的なモニタリングと必要に応じた戦略の修正を行うことで、投資判断の質をさらに向上させ、企業全体の成長に寄与できると感じました。

データ・アナリティクス入門

ギャップに気づく未来への一歩

どのようにギャップ認識? 問題解決のプロセスについて学んだことで、現状と理想(あるべき姿、ありたい姿)のギャップを明確に把握する重要性を実感しました。現状が理想に達していない場合はまず「あるべき姿」を定め、さらに改善を目指す際には「ありたい姿」を設定するという考え方は、今後の業務に大いに役立つと感じています。 どう分類を柔軟に? また、ギャップを特定する際には、MECE(漏れなく、ダブりなく)を意識することが推奨される一方で、状況に応じて「その他」の分類も柔軟に取り入れることが大切だと学びました。単なる分類に終始するのではなく、実際に意味のある分別ができるよう努める必要があると考えます。 何故課題整理が必要? この学びは、データ分析の課題設定において非常に有効です。分析に取り組む前に、まず現状と理想のギャップを整理することで、的確な課題設定と見落としの防止が図れます。さらに、他の人が設定した課題についても、自分なりの視点で再考し、改善点を見つける習慣を身につけることが重要だと感じました。 どのような目標管理? 実際の業務だけでなく、目標設定やソフトウェア導入の検討プロセスにも応用できるこのスキルは、定期的な進捗確認や必要な修正を行うことで、最適な状態を維持するのに役立ちます。自分で設定する課題や目標だけでなく、チーム全体で意見を共有し、ディスカッションすることで、より本質的な問題解決へとつながると期待しています。

クリティカルシンキング入門

クリティカルシンキングで未来を切り開く

クリティカル思考は何? 講師によれば、クリティカルシンキングとは「問い」と「答え」であるとのことでした。また、他の受講生がコメントしたように、クリティカルシンキングはロジックツリーやMECEといった技術にとどまらず、「それで良いのか」と常に自己批判のマインドを持つことが重要だと分かりました。この2つを知るだけでも、受講した意味があったと感じています。 イシューの本質は? これまでも「なぜ」を繰り返すことや、他人の考えをすぐに取捨選択しないよう意識してきましたが、今後はもっとイシューを意識して考えていきたいと思います。また、作成するグラフやデータの切り口についても、欲しい結果ありきになっていることに気づいたので、様々な角度からシミュレーションを行うように心がけたいです。 全体をどう捉える? 行動を起こす前には、前提や全体を俯瞰して捉えることが重要です。そして、着地点を想像せずに的確な「問い」を設定し、ピラミッドストラクチャー、ロジックツリー、MECE、多方面からのグラフ化などを活用しながら、常にイシューを意識して一貫性を保ちつつ目標に到達することを目指します。 伝え方はどうする? また、相手に伝える際には、どのように伝えるかを考え、効果的なコミュニケーションを図ることで、チームとして成果を生み出したいと考えています。このプロセスを常に行うことで、無意識に実践できるように習得したいです。

データ・アナリティクス入門

数字が繋ぐ学びのストーリー

分析の目的は? 分析について学んだ点としては、まず分析の目的を明確にすることの大切さを実感しました。分析は単なる数字の羅列ではなく、比較を通して意味を見出し、意思決定に役立つ結論を導き出すことが求められます。また、手元にないデータからも推測を行うことで、新たな洞察が得られる場合があること(例として、戦闘機の事例)が印象に残りました。 仕事にどう生かす? この学びを仕事に活かすため、分析に取り組む前には「なぜ分析を行うのか(Why)」、「その目的を達成するために何を分析すべきか(What)」、「どのように比較検討するのか(How)」を明確に文書化することが必要だと考えます。例えば、進行中の消費者アンケート調査では、調査の目的、分析対象、比較対象と方法を整理することが求められます。また、広告効果測定においては、分析対象が広告以外の条件とどのように整合性をもって比較できるか検討することも重要です。 報告はどう伝える? 報告時には、まずデータそのものの事実を示し、次にそこから読み取れる解釈を伝え、最終的に結論としてまとめるという流れが効果的です。一方で、営業提案用の資料作成の場面では、自社に有利な解釈ができるようデータの切り取り方に工夫が求められる状況もあります。私は分析担当として、あくまで客観的でフラットな視点からデータを伝えることを心がけているため、その点について皆さまのご意見を頂ければと思います。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。
AIコーチング導線バナー

「行う × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right