データ・アナリティクス入門

分析で見える明日のカタチ

分析の目的は何? 分析とは、物事を具体的に明確化し、より良い意思決定へ結びつけるための手法です。より良い意思決定を行うには、まず目的をはっきりと定め、その達成に向けた具体的な比較対象や評価基準を設けることが重要です。 比較の意図は? 目的に沿った比較対象を設定することで、分析結果の見せ方にもメリハリが生まれ、伝えたい意図を明確に示すことができます。データの比較やグラフの工夫により、情報を読みやすく、効果的に伝えることが可能となります。 事例の意味は? たとえば、人事部門におけるデータ活用事例としては、以下のような取り組みが考えられます。制度導入効果の検証では、退職率や従業員満足度を過去の実績と比較し、制度の効果を測ります。入職・退職の動向把握では、社内や業界全体のトレンドを把握することが重要です。また、配置や異動の最適化、研修やスキル管理、エンゲージメントの可視化といった分野でも、データを基にした分析が行われています。 退職率の分析は? 具体的に退職率の分析に取り組む場合、まず上司との認識を合わせ、分析の目的を明確にすることが必要です。目的としては、人材の流出抑制や制度改革の効果検証、さらには業界・社内の現状把握などが挙げられます。 比較基準はどこ? 次に、自社内の過去の実績や、制度変更前後のデータ、同業界・同地域・同規模における最新のトレンド、さらには年齢や勤続年数といった属性別の変動など、具体的な基準を設定して比較を行います。 伝達方法は? さらに、複数のグラフや推移グラフ、色付けやサイズ変更などを用いて、分析結果の意図をより明確に伝えることが求められます。このような取り組みを通して、目的に沿った分析を進めることが、より良い意思決定へとつながっていきます。

クリティカルシンキング入門

言葉が映す未来への一歩

ライブ授業は何を感じた? Week01のライブ授業の内容は、すぐには思い出せませんでした。人は忘れる生き物ですから、学んだ内容は定期的に見返すように心がけています。 言語化の効果はどう? この6週間で、言語化の難しさと、それを乗り越えたときに得られる効果に気づくことができました。言語化することで思考が見える化され、自分の理解度がはっきりするほか、考え方のBeforeとAfterが分かり、伝える相手への意識も高まります。こうした効果を実感できたため、今後も継続して取り組んでいきたいと考えています。 継続性の意味は? なお、こういったスキルは筋トレやダイエットと同じく、すぐに成果が出るものではなく、継続性が求められます。日々の業務においても、アンケート分析や会議での方策検討の際、全体を俯瞰して思い込みや決めつけを排除し、具体化と抽象化を意識することは重要です。問いを設定し、仮説を立てることで、効率的な分析を行うようにしています。 分かりやすさの秘訣は? また、メールや資料作成の際には、相手に伝えたいことや必要な情報をシンプルかつ的確に表現する工夫を重ねています。メッセージの言い回しや、表・グラフの見せ方にも意識を向け、誰にとっても分かりやすいものを作ることを心がけています。 振り返りで気づいた? 実践の場でこの学びが活かせるよう、定期的に振り返りタイムを設け、以下のスキル向上を目指しています。まず、日々の学びや気づきを具体的な教訓に変えることで、抽象化力とMECEな視点を養います。次に、思考や感情の言語化を通じて、整理された考えを構築すること。そして、継続的な振り返りにより自身の変化を確認し、不足している視点やスキルの改善に努めることで、学習習慣の定着を図っています。

戦略思考入門

捨てる勇気で掴む新たな可能性

どこを分析すべき? 客観的に情報を捉え、定量的に分析することは重要です。勝てるポイントを見極め、選択と集中を行うことで、効率的な資源配分が可能となります。このためには、高コスト・高品質・時間・労力・効率・利益率・回転率といった多方面からの分析が必要であり、どこに投資するのかを明確にすることが大切です。 優先順位はどうする? 「選択と集中」という考え方は、言い換えれば「捨てる勇気」を持つことにも繋がります。限られた資源を最適に活用するためには、何を優先し、何を後回しにするのかという優先順位を付けることが求められます。そして、何を捨てるべきかという理由を探し、その反対に捨ててはならない理由を考えることも、優先順位の明確化に役立ちます。 品質はどう選ぶ? 捨てることが良い結果をもたらす場合もあります。例えば、顧客が喜ぶと思って商品を過度に高品質にすることでコストがかかることがありますが、品質を少し落としても販売価格を下げることが顧客の望みである場合も少なくありません。 本当に改善できる? 人は習慣を変えることに抵抗を示す傾向があります。しかし、始めたことをやめる際には、それが最適な選択であることを確認できるようにすることが大切です。例えば、重複している定例シートの作成や、必ずしも必要ではないダブルチェック、意味のない定例業務にリソースを割く意味を再評価する必要があります。 効果はどこに現れる? 結論として、費用対効果や得られる結果を考慮しながら資源の投資先を決定し、冷静にリソースの分配先を選ぶことが重要です。そのためには、批判的な思考を持ち、無駄を見つけたときにはそれをやめてみる勇気を持つ必要があります。これらを客観的かつ定量的に考え、判断することが求められています。

データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

戦略思考入門

真似されず輝く自社の魅力

講座受講の本当の意味は? 今回の講座を受講する理由は、経営戦略の学びが自身の業務にも深く関係している点です。特に、顧客にとって価値があり、選ばれるための差別化が重要な視点だと感じています。 差別化の本質は何? これまで「差別化をしたい、考えたい」とよく思っていましたが、具体的に深掘りする方法が分からず、また「真似されるな」と主張していたものの、真似されるものはそもそも差別化とは呼べないと気付きました。加えて、差別化を実現するにあたり自社の強みを意識する中で、真似できないソフト面が今の組織の大きな強みであると認識し、これを大切にしていきたいと考えています。 VRIOを活かす秘訣は? また、VRIOの考え方が非常にわかりやすかったため、さっそく現業務に活用したいと思います。自分の事業内容の見直しの際に、特に情報配信やイベントでの差別化の方向性を模索していたため、学んだ内容が具体的なヒントとなります。さらに、女性対象に情報配信や起業家支援を行う事業でも、企画から実施、告知、集客に至る各段階で役立つと感じました。 集客はどう取り戻す? 近年、SNSの台頭などで仕事の依頼が減少し、売上が低下しているため、改めてフレームワークを活用し、独自のサービスを打ち出す必要性を感じています。そこで、まずスタッフミーティングで集客に関する概要を伝え、各自に「なぜ集客が必要か、どのような手段が考えられるか」を宿題として考えてもらいます。 実践後に何を考える? その後、スタッフ全員で実際のワークを行い、まとめた内容を可視化して、とりあえず実践に移します。実践した後は反省点を振り返り、改善に努める予定です。具体的なテーマとしては、夏休みイベントを取り上げています。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

戦略思考入門

戦略的思考で未来を描く学び

戦略的思考の意義は? 戦略的思考とは、未来志向で中長期的なビジョンを持ち、逆算思考でそのゴールに到達するまでのステップを考えることです。また、選択と集中、取捨選択を行うことでゴールを明確にすることが重要です。「戦を略す」という言葉のように、無駄な戦いを避けることが大切であり、必ずしも一直線でゴールに向かう必要はありません。目標達成に向けて複数の選択肢を持つことが、視野の広さと視座の高さを持つためには重要だと感じました。 創発的戦略はどう理解? 戦略というと、何かしら決まったことが前提とされると思い込んでいました。しかし、創発的戦略という言葉とその意味を学ぶことで新たな知識を得ることができました。 中長期計画の立て方は? 中長期経営計画においては、会社のミッションや戦略に対して、自分の組織のミッションや戦略を上位組織に沿うように、将来起こり得ることを想像して作り上げる必要があります。それには、現在の状況と未来の姿を明確にし、逆算思考を用いて計画を立てることが有効です。 現状認識は正確か? 現在の状況を明確にするためには、整理したアウトプットをもう一度メタ認知で客観的に評価し、理想とする姿に合致しているかを確認することが求められます。 伝える力は十分か? 言葉にしてわかりやすく伝えることは、自分自身の理解を深めることになり、確認作業として効果的です。そのため、積極的にこれを行うべきです。また、第三者の視点を取り入れることで新たな気づきとなるため、他者の意見に耳を傾け、自分の考えに閉じこもらずに思考し、アウトプットに対する意見を柔軟に受け入れていくことが重要です。

マーケティング入門

新規事業のヒントを探る旅

顧客のペインポイントをどう探る? 顧客の「ペインポイント」が新規事業やビジネスの種になることを実感しました。また、ペインポイントを探るためのフレームワークや手法が存在することを初めて知りました。自分自身が顧客になり得るという視点を持つことも、ニーズやウォンツ、ペインポイントを探し出す仮説の一部になり得ると感じました。顧客へのフィールド調査は重要ですが、仮説をもって取り組むことで、より効果的かつ効率的に進められるのではないかと思います。一方で、バイアスが困難を引き起こすことがある点も注意しなければなりません。 IT企業の将来展望は? 私の会社はシステム開発を手掛けるIT企業で、主にB2Bをビジネスとしていますが、将来的にはB2Cの視点も求められるのではないかと感じます。大型システム開発が減少し、SaaS形式のサービスが主流となる中で、既存のビジネスに固執することは衰退を意味します。お客様の業務において、まだ気づかれていない課題や問題、不便さを見つけ出し、それに対するサービス提供を行う能力が必要です。経営企画として事業戦略を策定する際には、マーケティングの観点を取り入れていきたいと考えています。 マーケティングの現場重視の取り組みは? マーケティングはフレームワークや手法が発展した領域ですが、お客様のニーズやウォンツは現場にあると考えています。会議室やオフィスでの議論だけでなく、実際の現場を確認する意識でマーケティングに取り組みたいです。顧客訪問ができない場合は、現場担当者との密なコミュニケーションも効果的ではないかと考えます。定期的に現場のニーズを収集できる仕組みを考えていきたいと思います。

クリティカルシンキング入門

数字を味方に!分解力で成長する分析術

数字を味方にするには? 数字を味方にするには「分解」が必要であることを学びました。また、分解には複数の切り口で行うことが大切です。単純に機械的な切り口では、本当に欲しい結果が得られにくいため、定性的な仮説を持ちながら視点を変えつつ切り口を探すことが重要です。 手を動かすことの意義とは? 特に「まずは手を動かす」という点は感銘を受けました。やってうまくいかなければ、それは失敗ではなく有効ではなかったことがわかるというパラダイムは新鮮であり、大きな学びとなりました。 MECE手法で得られるものは? 手法としてMECEを活用することで、適切な分解に繋がることも学びました。「分解する」と一言で言っても、最低限の分解方法の知識がないと意味がありません。MECEの手法を学び、仮説を立てながら実践に移したいと思います。 キッチンカー分析にどう活かす? 現在、自社の敷地内に出店しているキッチンカーの売上傾向の分析を行っていますが、この分析に今回学んだことが役立つと考えています。今まではデータを機械的に分解し、データを集めて傾向を調べ、次の仮説を立てていましたが、そもそもの分解が正しいか疑問を持つところから始める必要があります。異なる切り口によって、より効果的な分解と分析に繋がるので、その方法を実践してみます。 AIとの協働で得られる発見は? 上記の集計しているデータを見直し、自分で立てた仮説とAI分析による切り口の提案を比較してみるつもりです。切り口や分け方を自分で考えると同時に、AIでもうまく提案させるようなプロンプトを工夫し、斬新な発見ができる方法を模索したいと思います。

データ・アナリティクス入門

データ分析で見つける新たな視点

分析プロセスの目的は? 分析は、目的に基づいて要素を分けて整理し、意思決定に活かすためのプロセスです。重要なのは、分析が迷子にならないようにすることです。目的を持ってデータを収集し、それに基づいて加工・分析を行うことが求められます。分析は比較となり、データの種類に応じた適切な加工法を使って意味を明確にすることが重要です。 視覚化手法をどう活用する? 視覚化の工夫も、分析の際には非常に役立ちます。例えば、n択の選択人数を割合で見る、全体に対する比率や割合を円グラフで表現するといった工夫が考えられます。推移の比較には縦棒グラフが適しており、要素間の比較には横棒グラフが効果的です。 仮説設定がなぜ鍵となる? 分析のプロセスで大切なのは、目的や仮説を明確にすることです。仮説をもってデータを収集し、加工して結果を導き出す過程で、なぜその分析を行うのか(背景)、そしてそのデータから何が言いたいのか(主訴)を明確にすることが鍵となります。また、仮説が誤っていると判明した場合は、分析の進め方や視点を見直し、正しい結論に導くことが必要です。 学んだことをどう実務に活かす? さらに、ライブ授業で学んだTIPSを実務に活かし、具体的なデータの可視化手法に取り組んでみることで、理解が深まります。質的データに関しても、名義尺度や順序尺度といった基本を学び、さらなる分析力を身につけてください。 このように、分析の目的やデータの加工法についてしっかり理解し、視覚化手法を活用することで、効果的な分析が可能になるでしょう。学んだことを実際のデータに適用し、実践を通じて、さらなるスキル向上を目指してください。

戦略思考入門

新しい価値を生む勇気の秘訣

人間の習慣はどう変えるべき? 人間の習慣を変えることは難しいものであり、特に日本企業や日本人は何かを捨てるのが苦手な傾向があります。しかし、時には捨てることで顧客の利便性が向上する可能性もあります。過去の習慣に流されず、新しい意見を聞き、なぜそれが必要なのかを論理的に説明する力が求められます。また、専門家に任せることも選択肢の一つです。重要なのは、勇気を持って決断することです。 トレードオフをどう活かす? トレードオフとは、何かを追い求めるときに別の何かを失うことを意味します。例えば、高品質と低価格、電車とマイカーはその典型です。このような状況では、効用を最大化することを目指し、バランスを取ることが重要です。また、目指す方向性を明確にすることで、最適な選択をすることができます。安易に選択するのではなく、ブレークスルーを見つけることができれば、大きな成果を手に入れることが可能です。 ビジネス効率をどう見直す? ビジネスシーンでは、定例会の見直しやアップデート中心の会議の必要性を再評価することが重要です。また、提案や情報収集も、狙いを定めて効率的に行うべきです。プライベートでは、家事を外部に委託したり、効率的に生活を送るための選択を考慮することが求められます。キャリアにおいても、惰性に流されないようにしつつ、長期的視点を持ち、効用を最大化するための選択を心がけることが肝要です。 投資効率をどう高める? こうした判断においては、投じた時間的コストと成果を冷静に見直すことが大切です。特にビジネスでは、年間を通じた投資効率をチェックしながら、必要な改革を実施していく姿勢が求められます。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

「行う × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right