リーダーシップ・キャリアビジョン入門

自分に余裕、対話で花咲く

エンパワメントの真意は? エンパワメントのコツについて学びました。まず、自分自身が余裕を持って取り組むことと、相手をよく理解することが重要であると感じました。ただし、すべての仕事にエンパワメントが通用するわけではなく、手に余る仕事や不確実性が高い業務、そして一度の失敗が許されない仕事には注意が必要です。 目標設定の工夫は? また、目標設定の場面では、相手に自ら考えさせ、その意見を引き出す方法が大切だと学びました。その際、相手が「分からなくて」やる気がないのか、「できなくて」やる気がないのか、あるいは最初から「やりたくない」のかを見極めることがポイントです。もし相手が困惑して「やりたくない」と感じている場合は、やる気が湧くような伝え方を工夫し、意味を分かりやすく伝える必要があります。 余裕の大切さは? 私が一番心に響いたのは、「自分自身に余裕をもって」という考えです。余裕がある状態では、相手の話をゆっくりと聞くことができ、たとえピント外れの回答であっても受け入れて、適切にアドバイスや補正を行えると感じました。一方で、余裕がない場合には感情的になりやすいため、対話に臨む前に自分自身の状態を見極めることが大事だと思いました。 目標と組織はどう連携? 今後、目標設定の際には、相手の話をよりよく聞くように努めます。そして、自分で判断するのではなく、相手に「分からないのか、できないのか、やる気がないのか」を考えさせるように意識します。さらに、相手の目標と組織の目標を結びつけ、広い視野でやる気を促すために、6W1Hを意識した定量化ができる目標設定を行い、フォローアップの頻度も増やしながら、寄り添う姿勢で接していきたいと思います。

マーケティング入門

ターゲット再分析で広がる提案の可能性

ターゲティングの再認識をするには? ターゲティングの重要性について再認識しました。現在の業務では、ターゲットが漠然と決まっていることが多く、そのため提案を作成する際にもそのまま進めていましたが、ターゲットを明確にし、他の切り口からも考えていくことで、提案の幅を広げることができると感じました。 フレームワークはどう活用する? また、ポジショニングマップの活用についても理解が深まりました。提案書作成時にフレームワークの重要性を再確認し、特にポジショニングマップを使うことで伝えたい内容をわかりやすく、より効果的に伝える提案ができると学びました。現在作成中の提案書にこの方法を取り入れて実践しています。 新規業務での提案の工夫は? 新規業務の提案書作成においても、早速ポジショニングマップを作成し、提案の重要なポイントを絞り込んでいます。以前は提案内容が多岐にわたってしまうことが多かったのですが、ターゲットの再分析とポジショニングマップを用いることで、セールスポイントを明確に絞ることができるようになりました。 新市場開拓で見えてきたこと 新しい市場開拓に向けた自社サービスの提案を進めている中で、当初想定していたターゲットとは異なる切り口でも再分析することで、新たに提案できる内容が見えてくるのではないかと考えました。早速チームで共有し、意見を求めることにしました。 チームと成果を共有する方法 現在の提案書作成活動では、ポジショニングマップを取り入れ、チームメンバーにも共有することで、セールスポイントの洗い出しや、重要なポイントの確認に役立てています。ターゲティングについてもメンバーと意見交換し、次回のミーティングまでの課題としています。

マーケティング入門

ヒット商品を生むための要件解析

ヒット商品を生むには? 商品がヒットするためには、多くの要素が絡み合う必要があると感じました。商品を生み出すこと自体は比較的容易ですが、ヒット商品に育てるのは簡単ではありません。まず、競合と比較して自社の強みが発揮できている分野かどうかが重要です。次に、ネーミングで商品をアピールし、親しみやすさを感じさせることが求められます。また、顧客の真のニーズを捉えているかどうか、つまりカスタマージャーニーを考慮し、単なるウォンツではなくニーズを理解することが大切です。顧客が支払ってでも解消したい不便(ペイン)を、利益(ゲイン)に昇華させることが求められます。 BPOとBPRの重要性 業務プロセスのアウトソーシング(BPO)や業務改革(BPR)も、クライアントのペインポイントを見つけ、それをゲインポイントに昇華させることが求められる事業だと感じます。特に、将来的に外部収益を伸ばしたい分野ではもちろん、現在の自社内の業務移管においてもこの視点が重要です。何がペインポイントなのかを追求し、それをゲインポイントに変換する方法を見つけ、実現につなげることが大切です。 効率化にどう取り組む? ステークホルダーが業務移管やBPOを希望する業務には、必ずペインポイントが存在すると思われます。(面倒なことや時間がかかること、コア業務でないから外部に委託したいなど)AIや自動化を用いた業務効率化がゲインポイントとなるのか、それとも業務フロー内に決定的なペインポイントがある場合を想定する必要があるでしょう。ただし、単純に工数の圧縮を目的にするのではなく、真のペインポイントを見つけ、それをゲインポイントとして昇華させる視点を持って、日々の業務に取り組むことが求められます。

クリティカルシンキング入門

文章力への戒めと成長の旅

文章の惰性を見直すには? 普段から議事録などを書く機会が多い私は、自分の文章力を過信していたことに気づかされました。動画学習の中で「さぼったツケは相手にくる」というフレーズに出会い、これは日常の惰性を改める戒めだと痛感しました。お客様へのメールや社内の議事録、同僚へのチャットや部下への説明など、多くの場面で慣れからくる「さぼり」があったのではないかと省みる機会になったのです。今後は一つ一つの文章にも新鮮な気持ちで取り組むことを心掛けたいと思います。 誤解を防ぐにはどう? 私は企画部門を担当していますが、多くの部門を巻き込む業務が多いため、メールやチャットなど連絡手段が多様化しています。このような中で、ワンフレーズの簡潔な文章が誤解を招く原因になると感じています。特に他部門や上司への報告、メンバーへの指示においては、相手の受け取り方を想像し、誤解を避けるための報告・連絡・相談を徹底していきたいと考えています。誤解を避け、齟齬を生まないことが、業務におけるパフォーマンスと生産性の向上につながると信じています。 文章力向上の秘訣は? 昨今、議事録作成AIツールやMicrosoft CopilotなどのアシスタントAIが提供されており、文章を書くことが軽視されているように感じます。さらに、書くだけでなく、読むことや読解力も軽視されがちになるのではないかと懸念しています。動画学習の中で「週に1回400文字程度の文章を作る練習」が推奨されましたが、これに加え、新聞やビジネス書、小説などの読書機会も増やしていきたいと考えています。また、文章を読むことが苦手で面倒だと思ってしまう癖があるため、今回の講座を通じて改善していきたいと思っています。

戦略思考入門

捨てる勇気が戦略を進化させる

戦略における「捨てる」とは? 今週は、戦略における「捨てる」ことについて学びました。実践課題を通じて、ROIを用いて優先順位を決定する判断軸が存在することを理解し、自分の1時間あたりの利益を意識して仕事に取り組むべきだと感じました。また、顧客の会社や市場の成長度合い、当社への貢献度など、さまざまな判断基準があることも改めて学びました。 「捨てる」ことで何が変わる? 「捨てる」ための意識として、いくつかのポイントを強調したいと思います。まず、捨てることで顧客の利便性が向上することがあります。また、昔からの惰性で行動しないことや、専門的なことは専門家に任せることも重要です。これらの意識を持つことで、効果的な戦略を立てることができるでしょう。 トレードオフをどう決断する? 戦略を立てていく中で、トレードオフが発生する場合があります。その際、何を「捨てる」か決断し、意思決定を行うことが必要です。私は営業部署に所属しているため、案件対応を進める際に、これらの判断基準を念頭に置いて工数を決めていきたいと思います。判断が難しい場合は、上司と相談しながら、判断の根拠となる材料(ROIや顧客の貢献度)をもとに決定していきます。 プロジェクトでの「捨てる」選択 現在携わっている新規プロジェクトでは、トレードオフが生じていないか分析中です。トレードオフ状態にある場合は、プロジェクトメンバーと共に何を「捨てる」かを決め、意思統一を図っていきます。業務においては、重要な判断基準をデータとして手元にまとめておくことが有用です。新しいプロジェクトを進める際にも、必要に応じて「捨てる」選択を行い、方向性をメンバーと共に決定していくことを意識するようにします。

クリティカルシンキング入門

ピラミッドストラクチャーで問題解決!自分も挑戦してみたくなる学び

イシューの明確化とは? 問題に対してイシューを明確に定めることが問題解決の鍵となります。与えられた数字にひと手間加えて、さらに深堀りして解決策を導き出すことが重要です。この「ひと手間加える」という行為は、発想の転換や疑問を持つこと、つまりクリティカルシンキングに繋がります。 復習で得られるものは? これまで学んできた内容が詰まった例題でしたが、自分の中でまだ完全に落としきれていない箇所もありました。そのため、学んだ内容を改めて復習しようと考えています。 イシュー設定の三つの留意点 イシューの留意点として、「①問いの形にする」、「②具体的に考える」、「③一貫して押さえ続ける」が挙げられます。この中で「③」に関しては話が外れてしまう経験があります。したがって、今後イシューを考える際にはこれら三つの留意点をしっかり意識します。 問題解決における協力の意義 会議のファシリテーターや解決策を話し合う会議、そして後輩からの業務相談や自分自身の仕事の悩み解決など、解決策が必要な場面では、相手と一緒にイシューを明確化する作業を行うよう心掛けます。自分の問題解決においてはピラミッドストラクチャーを意識して考えるようにします。 スキル向上への努力方法は? 適切なイシューの設定と深堀りは、何度も実践することで身に付く技術だと思います。まずは自身の仕事の悩みや課題を題材に取り組んでみます。 会議を成功させるには? これまで解決策が出せず会議が脱線して終わることが多々ありました。今後は適切なイシューの設定と深堀りを行い、イシューの留意点「①問いの形にする」「②具体的に考える」「③一貫して押さえ続ける」を押えて進めていきます。

データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。

戦略思考入門

守りと攻めが共鳴する現場戦略

安全と生産の秘訣は? 自動車業界における安全性、特に保安部品の長年の取り扱い実績を土台として、製品の幅を徐々に拡大している点が印象的でした。現状では、工場や設備を活用して他社よりも大量生産を実現する低コスト戦略と、新たな製品開発による差別化を両立させています。特に、近年の自動化や電動化の流れに対応するため、電気電子の技術を組み合わせた車づくりや部品開発がリーズナブルに行われている点は非常に理解しやすいものでした。 多様化市場でどう挑む? また、最近の市場環境では自動車購入者が減少し、顧客のニーズが多様化していることから、購買力の高い世代を中心にターゲットを絞った戦略が取られている印象を受けました。伝統的な単一戦略に固執せず、時代の要請に応じて柔軟に戦略を見直していく姿勢は、全体として適度なリスクヘッジがなされていると感じます。 既存設備の活かし方は? 変化が絶えず続く中で、既存の大量生産設備をどのような商品企画に活かすかが大きな課題です。共通部品ではなく、個別仕様の製品が増えると固定費が増大するリスクがあるため、製品ラインナップの分類が極めて重要だと考えました。私が所属する部署では差別化を進める業務に従事していますが、既存製品とのシナジー効果を改めて検証し、各戦略について自分なりの見解と分析を深める必要性を感じました。 攻守両立の秘訣は? 今一度、苦戦している事業部の製品を見直し、差別化技術で解決の糸口がないか検討したいと思います。撤退するのは容易ですが、長年培ってきた経験と実績を築くのは困難です。攻める戦略だけでなく、守る戦略としての差別化を武器に、部門の一員として今後も貢献していきたいと強く感じています。

デザイン思考入門

受講生のプロト挑戦と成長記

ユーザーの反応はどう? ユーザーからのフィードバックをもとに改良を重ねることが、成果向上の鍵だと実感しました。そこで、ユーザーの反応をスピーディーに得る手法を検討する必要性を感じています。具体的には、デザイン画や模型など、素早く形にできるプロトタイプの作り方が効果的です。フィードバックは、見た目、機能、使用感という3つの観点で捉えることができ、何を試したいのか、何を確かめたいのかを明確にして適切な手法を選ぶことが重要と感じました。 生成AIの可能性は? また、多くの受講生が生成AIを活用していることにも驚きました。ビジュアル化の面で、今後は私自身もこの技術を積極的に活用していきたいと思っています。 プロトタイプの意義は? 私自身の業務に当てはめると、扱う教材をどのように現場で使っていただくかを検討する役割があります。例えば、現場の指導提案を行う際、いきなり詳細な資料を持ち込むのではなく、まずはプロトタイプとして提案内容を形にし、意見を求めたり実際に使用してもらったりすることで、改善の余地を探ろうとしています。 プロトタイプの罠は? ただし、プロトタイプにこだわりすぎるとスピード感を失い、作成したものに固執してしまうリスクもあります。私自身は、商品開発の立場ではないからこそ、営業、マーケティング、開発といった異なる部門と連携し、情報を共有することが、よりよい企画へとつながると考えています。 十分な準備はどう? 今回の課題に取り組む中で、これまでの積み重ねがプロトタイプの精度を大きく左右することを痛感しました。自分なりに検討はしたものの、他の受講生に比べると十分な準備ができておらず、反省すべき結果となりました。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

「業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right