アカウンティング入門

事業の価値に隠れた数字の秘密

P/Lの利益は何を示す? P/Lの5つの利益は、① 売上総利益(粗利)、② 営業利益(本業からの利益)、③ 経常利益(財務活動を加味した利益)、④ 税金等調整前登記純利益(一時的な損益を反映した利益)、⑤ 当期純利益(1年間の最終的な利益)です。 どの指標に注目? 一見、カフェという同じ業態でも、提供しようとする価値が異なれば、重視すべき指標も変わってきます。単価、客数、コストなど、どの要素を削減(または増強)すべきかは、事業が提供する価値次第で決まります。したがって、事業の価値を念頭に置きながらP/Lを見ることが重要です。 戦略はどう選ぶ? また、他社の事例を参考にすることもありますが、事業が提供する価値によって取るべき戦略が全く異なることが分かりました。安易な比較や模倣を避け、自社の事業価値を十分に理解したうえで戦略を検討する必要があります。さらに、これまではホームページなどで定性的な情報に目を向けていましたが、今後はP/Lの数字や決算に関するニュースを確認することで、事業を通じてどのような価値を提供するのかをより明確に把握できるようになると感じています。

データ・アナリティクス入門

平均だけじゃないデータの真実

データ比較は何が目的? データ分析において、比較は重要な手法です。たとえば、単純平均は代表的な指標ですが、これだけでは散らばりの情報が反映されず、重要なデータが見逃される危険性があります。そこで、標準偏差や中央値など、状況に応じたさまざまな指標を併用することで、より正確な分析が可能となります。また、グラフ化することにより、傾向を把握しやすくなり、新たな仮説を立てやすくなるという利点もあります。 サイト指標をどう考える? Webサイトにおける各種指標の検討でも、従来の単純平均だけでなく、データのばらつきを反映させる標準偏差の計算や、グラフを用いたビジュアル化が重要であると考えられます。こうした手法によって、これまで気付かなかった仮説を発見する可能性が広がります。 仮説検証はどう進む? 現在実施しているWebサイトのデータ分析についても、今回学んだ各種指標を活用し、改めて平均値の計算やヒストグラムによる可視化を行います。その上で、従来の仮説が成立しているかどうか、また新たな仮説が導き出されるかを検討し、反復的な検証により、より多角的な分析を進めていく予定です。

データ・アナリティクス入門

目的明確!振り返りから学ぶ分析術

比較で何を学ぶ? 分析は、比較するところから始まります。ただ単に集計結果をまとめるだけではなく、そこから得られる示唆を示したり、グラフ化して見やすく提示することが求められます。また、分析はあくまで手段であるため、常に分析の目的に立ち返り、手段自体が目的にならないよう注意する必要があります。比較対象としては、目に見えるデータや得やすいデータだけでなく、見えにくい側面も含めて選定することが大切です。 目的設定はどうする? そのため、データをエクセルで加工する前に、まず十分な時間をかけて目的や比較対象を明確にすることが重要です。目的をはっきりさせることで、分析結果の妥当性や有用性を高めることにつながり、関係者の意見を取り入れるなどして、慎重に検討する姿勢が求められます。 何を紙に書く? また、分析を始める前に、目的、比較対象、仮説などを紙に書き出しておくとよいでしょう。作業中は都度その紙を見返し、目的から逸れないよう気をつけます。目的があいまいなまま設定されることが多いため、必要に応じて、事前にまとめた事項を見直しながら分析を進めることが効果的だと考えます。

データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。

データ・アナリティクス入門

データ分析で業務改革を目指す学び

データ分析で重要なのは? 現在、実務の初歩的なデータ分析に触れる機会はあるものの、改めて分析手法を体系的に理解することができました。特に、データ分析においては課題設定と仮説が極めて重要です。ただ単に分析手法の知識を持つだけでなく、領域知識も必要となるため、日常業務では特に業務理解を深めることを意識していきたいと思います。 業務改革で何が求められる? 業務改革の根拠としてデータ分析を利用することが多いですが、第1週の学習を通じて、私が現在取り組んでいるのは、分析というよりもむしろ集計や可視化に近いことを理解しました。したがって、まず課題の設定や仮説に基づいてどのようなデータで比較するかを慎重に検討し、情報を収集することから始めるべきだと考えています。 領域知識を高めるには? また、課題設定や仮説を立てるための領域知識が不足しています。そこで、領域知識の向上を目指しながらも、分析を進めるためには周囲の協力を仰ぐことも重要だと感じています。データが複数のシステムにまたがって保存されているため、一度どのようなデータが存在するのかを整理することが重要です。

データ・アナリティクス入門

多角的視点で解くデータの謎

どんな事例が印象的? 具体的な事例をもとにした演習を通して、どのようにデータ分析を進めるかを学びました。ひとつの事例を取り上げ、「Where=どこに問題があるか」を徹底的に考察する過程では、自分では思いつかない切り口でデータやグラフを眺め、問題箇所を明確にしていく流れが特に印象的でした。この経験を通じて、物事を多角的に捉える重要性に気付かされました。 問題解決はどう進む? また、この講座では、問題解決のステップを活用して意味のあるデータ比較ができる方法を学びました。学んだ手法は、データ分析にとどまらず、日々の仕事で直面するさまざまな問題にも応用できると感じています。今後は、以下のステップを活用し、効果的な解決策を見出していきたいと考えています。 各ステップをどう確認? ①【What】「何が問題か?」──直面している課題や状況を明確にする ②【Where】「どこに問題があるか?」──問題の箇所を絞り込む ③【Why】「なぜ、問題が起きているのか?」──その原因を分析する ④【How】「どうするか?」──原因に対する有効な解決策を検討する

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

アカウンティング入門

未来を見据えるB/Sの新戦略

B/S活用はどう変わる? これまで、B/Sは「どれくらい資金を保有しているか」や「返済する必要がある資金の量」を中心に捉えていました。しかし、今後は自社ビジネスの成長のために、どのように資産を活用し、いかに資金を調達するかという将来像を描くためにもB/Sを活用できると実感しました。そのため、成功している同業他社のB/Sと比較し、自社の将来像を考察する必要があると考えています。 具体的には、以下の点が重要だと感じました。 将来の計画はどう考える? まず、自社の事業計画や資金調達計画を立てる際には、現状だけでなく将来を見据えた視点が欠かせません。現在の提供価値に加えて、将来的に求められる資産やその調達方法についても検討する必要があります。 成長戦略は何を学ぶ? また、これまでの業務では、過去の決算などの数値分析に重点を置いてきましたが、今後はこれらの数値を成長戦略に生かすため、将来志向のアプローチを取り入れたいと考えています。成長している企業や成功した企業が採用している戦略を学び、新たな技術やビジネスにも積極的に取り組む姿勢を持ちたいと思います。

データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

アカウンティング入門

分析で発見!改善のヒント

カフェの低単価の理由は? アキコのカフェは、ミノルのカフェと比べると単価が低いため、今後の売上高や利益の向上策を考えた際、売上原価や販管費の削減だけに頼りがちでした。しかし、カフェのコンセプトや立地、顧客の特徴をしっかりと把握することで、より前向きな改善策を検討できると感じました。 施設間の違いは? 具体的には、まず3月の各施設ごとの単月P/Lを確認し、施設間での違いや共通点、また異なる条件を洗い出したいと思います。そして、業績が振るわない施設について、原因を特定し、どのように改善するかをメンバーと具体的に話し合いながら進めていく予定です。もし次月のP/Lの数値に改善が見られたなら、まずはチームで乾杯したいです。 毎年の傾向は? 分析の手順としては、最初に3月の単月施設ごとのP/Lから業績の振るわない施設をピックアップします。その後、前月の2月および昨年3月のP/Lとを比較することで、毎年この時期に起こりうる現象やその要因を明らかにします。この過程で、現象が避けられないものなのか、あるいは数値を改善する余地があるのかを検証することが狙いです。

アカウンティング入門

カフェで見つける利益の秘密

利益の違いはどう考える? 5種類の利益の成り立ちや違いについて学び、増益や減益という言葉一つとっても、どの利益を指すかで意味が大きく変わることを実感しました。また、カフェの事例を通して、一口にカフェと言ってもターゲット顧客やコンセプトが異なれば、例えばミノルとアキコでは損益構造が大きく異なる点に気づかされました。 採算改善案はどう立案? 新規プロジェクトの立ち上げ時には、P/Lの構造をしっかり理解し、採算改善のための方法をロジカルに提案したいと考えています。また、損益改善のためには収益を増やすか費用を減らすかという選択を、プロジェクトごとにどのように実現するかを検討する必要があると感じました。 知識はどう深められる? さらに、アカウンティングの知識をより深めるとともに、自分の業務だけでなく、グループワークで他の受講生の事例を聞くことで、より実践的な知見を得たいと思います。また、ミノルとアキコの事例に加え、身近なカフェの損益構造と比較しながら議論を深めるとともに、他の受講生が今回の講義をどのように仕事に活かしているのかも伺ってみたいです。

データ・アナリティクス入門

データ分析で見えてきた課題解決のコツ

データ分析の重要性とは? データ分析において重要なのは比較することです。データは分かりやすく加工して活用する必要があります。また、私自身が特に気をつけたいのは、目的を決めてから行動することです。課題がどこにあるのか、なぜそうなっているのかを考え、選択肢を出してから仮説を立てて進めることが大切です。 売上向上に必要な行動は? クライアントの課題解決に際しては、大きな目的である売上向上に対して、小さな目的を設定してから行動する必要があります。どこに課題があるのか、仮説を持ってヒアリングを行いたいと思っています。また、自身の営業計画立案においても、既存の課題や理由だけでは向上しないため、繰り返し検証して精度を高めていきたいです。 ヒアリングの視点はどうする? 具体的には、クライアントヒアリング時において、「What」「Where」「Why」「How」という観点から文章を用意し、必要に応じて「あるべき姿」とのギャップについて整理していきたいと考えています。自身の営業計画についても、現時点で考えている課題と理由を再検討し、改善を図りたいと思っています。
AIコーチング導線バナー

「比較 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right