データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

戦略思考入門

3C分析で見える行政の未来

3C分析の目的は? 研修で3C分析が取り上げられることが多く、その目的が各事業の成功の鍵を見出すことにあるという点に改めて気付かされました。 行政の調査方法は? 行政の立場では、競合分析が他の自治体の動向を調査することを意味しますが、どの視点で後追いをするのか、あるいは独自性を持たせるのかといった点は、今後の課題として捉えています。 住民サービスの課題は? また、行政には多くの課題が存在し、特に住民サービスに過剰な時間が費やされる現状は大きな問題です。このため、効果的な対策を立てるには現状の徹底した分析が必要であり、原因分析に加えて住民の動向や自治体の強みをしっかりと把握する必要があると感じました。

戦略思考入門

差別化の鍵は強みの見極め

なぜ現状分析が必要? 講義を通じて、ただ単に顧客目線で考えるのではなく、差別化に向けては競合を意識し、実現可能性と持続可能性を検証することが重要であると改めて学びました。まずは、自社の現状を正確に把握するためにVRIO分析を実施し、その結果をもとにポーターの基本戦略を用いてターゲット顧客を絞り込む方法が効果的だと感じました。 どう優位性を確認? また、自社の優位性を明確にするためには、3C分析やSWOT分析と併せてVRIO分析を進めるのが有用であると思います。システム開発が本格化すると、柔軟に対応できる部分が限られてしまうため、提案活動の段階で自社の強みを十分に活かした提案を行うための準備が必要だと考えています。

データ・アナリティクス入門

既成概念を超えた発想のヒント

柔軟な発想って何? 既存の考えにとらわれず、引き出しを増やすことが仮説を立てる上で非常に重要だと感じました。 仮説の枠組みは? 3C分析や4Pの概念は耳にしたことがありましたが、実際に仮説を立てる際には意識できていなかったと気付きました。そのため、いきなり案を考えるのではなく、まずどのように考えるべきかを整理する必要性を実感しました。 どう顧客に寄り添う? また、離職者を減らすアプローチや、顧客の課題分析の際に、改めて3Cや4Pの考え方を取り入れる意欲が湧きました。さらに、顧客が自社の分析に必要なデータの種類や、適切な集計方法を提案する際にも、この視点を応用していきたいと思います。

データ・アナリティクス入門

繰り返し検証で磨く納得力

仮説検証の意義は? 仮説を立て、その仮説を実際に検証することが重要です。検証方法や使用するデータに誤りがないかを確かめることで、より具体的な仮説が作成でき、仮説の精度が向上していくことが分かりました。 検証繰り返しは大丈夫? これまでの分析では、仮説に基づく作業は行ってきたものの、同じ仮説を繰り返し検証する取り組みは十分でなかったように感じます。仮説に誤りがないかしっかりと確認することで、具体的かつ精度の高い仮説が作成でき、説明する相手に納得感を与える報告が可能になると考えます。そのため、今後の分析作業ではこの考え方を意識し、検証作業を繰り返すことが重要です。

データ・アナリティクス入門

未来への一歩、検証と仮説の物語

なぜ同条件での分析? 分析を進める際は、なるべく同じ条件下で実施することが求められると改めて感じました。仮説が優れていても、検証方法の質が十分でなければ、せっかくの仮説が十分な成果に結びつかないためです。 どうバランスを保つ? また、コストやスピードといった品質、価格、納期(QDC)のバランスを考慮し、最善の解決策を見出すことの重要性も再認識しました。 要因分析の視点は? 業績推移の要因分析については、同一または異なる条件下で発生した事象や、その背景にある要因に着目することで、より広い視野から仮説を構築し、検証プロセスに活かせると期待しています。

クリティカルシンキング入門

伝わる工夫!プレゼン極意

グラフで伝えるには? 情報を伝える際、文章で述べるかグラフにまとめるか、最適な方法を選択することの重要性を学びました。特にグラフを活用する場合は、扱う情報に応じて適切な種類を選ぶことが、効果的な伝達に繋がると理解しました。 伝わる資料の作り方は? また、仕事において自身が分析した情報をプレゼンテーション資料にまとめ、チームと共有する機会が多いため、伝わりやすいプレゼンテーションの作成方法は非常に参考になりました。強調するメッセージやグラフ、アイコンなどを活用することで、より効果的なコミュニケーションを実現し、早速取り入れていきたいと感じています。

データ・アナリティクス入門

データが語る平均の真実

平均計算のアプローチは? 平均の取り方やデータのばらつきを様々な方法で検証することで、より正確な分析が可能になると実感しました。ビジネスにおいて平均値が用いられる場合も、その計算方法や元となるデータの内容をしっかり確認する必要があると考えています。 データ集計の工夫は? また、ERP導入時に用いられるデータ集計機能について、顧客と集計方法を決定する際に今回学んだ考え方が非常に参考になると思いました。さらに、見積提示の際に平均工数を算出する必要がある場合、要件によって結果にばらつきが出るため、算出方法を工夫しながら検討する必要があると感じています。

データ・アナリティクス入門

原価分析で挑む学びの力

学びの成果は何か? 全体を振り返ると、学んだ内容について、しっかり理解できた部分と、まだ定着が十分でない部分があると感じました。本コースで学習した知識を、繰り返しの学習と実践を通じて自分のスキルとして定着させるため、今後も継続的に取り組んでいきたいと思います。 原価分析の活用は? また、現在従事している原価分析の業務において、今回習得した分析手法を活かしていきたいと考えています。自社の原価から浮かび上がる課題や、原価算出方法における問題点を、自分なりに洗い出し、経営陣へ根拠を持った提案を行うことで、業務の改善につなげていきたいと思います。

データ・アナリティクス入門

仮説で切り拓く未来への道

仮説で何が変わる? 問題解決の第一歩として、仮説を立てる方法を学びました。仮説にデータ分析の視点を加えると、その説得力や信頼性が一層増すことを実感しています。また、仮説を立案することにより、自分の行動の筋道が明確になり、周囲への説明もしやすくなります。 3Cや4Pの意味は? 仮説の立て方については、特に3Cや4Pといったフレームワークを活用し、複数の仮説を網羅的に考えることの重要性を学びました。決め打ちにせず、幅広い視野で仮説を検討することで、日々の小さな問題にも柔軟に対処でき、周りを巻き込んだ改善活動にも効果的に取り組めると感じています。

クリティカルシンキング入門

フレームで紐解く学びの力

視点を広げる方法は? 物事を分析する際に、細かく分解することで広い視点で物事を捉えられるという点が印象に残りました。 MECEの基本はどう? 特に、MECEの考え方について学びました。5W1H、3C、過去・現在・未来といった様々なフレームワークが存在するので、まずはそれらを覚え、有効に活用していくことが重要だと感じました。 実践で成果を出すには? また、MECEはコンサルティング業務において必須のスキルであり、資料作成や社内会議、クライアントとの打ち合わせなど、さまざまな場面で活用できるため、常に意識して実践していきたいと思います。

戦略思考入門

選択の極意:数値で裏付ける挑戦

戦略の選択方法は? WEEK4では「戦略における選択(捨てる)を身につける」というテーマを通して、選択する際には定量的なデータの分析が不可欠であることを学びました。同様に、WEEK5では数値化によって物事を可視化する手法を学び、定量化の重要性を再確認することができました。 新製品策の評価は? 現在の職場では、従来の製品とは異なる新しい製品の開発が求められています。新たな取り組みでは、多くの改善策や施策が立案されますが、その効果を数値で評価することで、結果が低いものを排除し、優先順位を明確にして着実に実行していきたいと考えています。
AIコーチング導線バナー

「分析 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right