クリティカルシンキング入門

イシュー特定で成功を引き寄せる方法

なぜ視点がずれる? イシューを特定する重要性と、それがずれるケースが非常に学びになりました。チームで議論をするとき、メンバーとの視点がずれていると感じることがあります。その原因として、イシューをしっかり特定せず進めるケースや、イシューが問いの形になっていないケースがあることを学びました。また、特定はできていても、思考の力や意識によって途中でずれてしまう場合も多いため、立ち返ることができる進め方が必要だと考えています。 本質の判断は? イシュー特定の際には、多くの分解ができたとしても、現状を踏まえ何をイシューとすべきかを特定する必要があります。今回の演習は、これまでの学びを繋げて実践的に学習できる機会となりました。 どう提案する? 解決策の検討や提案については、他部署から提示された課題に対して、人事領域でできる解決策を提案・実行することが求められます。日々のイシュー特定では、受け取った問題をそのまま進めずに、自分でさらに問いを立て、イシューがきちんと特定できているか確認したいと考えています。 採用の疑問は? 採用業務については、現状の問題を踏まえ来期の運用を考えている最中で、複数人で取り組んでいるものの、イシューの特定が正確かどうか疑問が残ります。そのため、データを分解し構造化して考えていきたいと思います。 具体策はどう考える? 具体的な取り組みとしては、MTGの際に議事録の頭や自分のメモに、特定したイシューを記載して常に押さえ続けるようにすること。また、課題を考える際には必ず構造化して書き出し、具体的に考える力を強化するために、具体と抽象を行き来するトレーニングを進めたいと思います。

データ・アナリティクス入門

仮説から行動へ!解決の近道

問題分析はどうする? 実際のビジネスでは、問題の要因が複雑に絡み合っており、「正しい」原因の究明はほぼ不可能です。そのため、原因の目星が立った段階で早急に対策を試してみることで、解決に近づけると感じました。データ収集と分析は重要ですが、what、where、whyがある程度把握できた時点で、howのアクションを起こしながら問題の原因を探ることが大切だと思います。こうしたアプローチの中で、A/Bテストは特に有用です。 仮説検討のコツは? また、原因の仮説を考える際には「対概念」を活用することが効果的であると感じました。問題に関連しそうな要素をリストアップするだけでなく、それ以外の視点にも目を向けることで、思考の幅を広げ、戦略全体の問題点やその他の要因を整理することが可能になります。 迅速な対策は? この「Howを試しながら問題の原因を探る」考え方は、変化の激しい現代の業務において非常に有効です。たとえば、定期的に行われるストレスチェックで高ストレス者が多い組織があった場合、原因を探り続けていると年度交代や組織変更で状況が一変してしまう恐れがあります。したがって、原因がある程度見えてきた段階で素早く打ち手を実行し、問題解決に向けたスピード感を持つことが求められます。 データ準備は万全? さらに、現在担当している業務において問題解決の4ステップを進める際には、どのようなデータが必要かをあらかじめリスト化しておくことが重要です。必要なデータがすぐに揃わない状況では、検証に時間がかかり、迅速な対応を妨げる可能性があります。事前に想定して準備を整え、howの実行に至るまでをスムーズに行いたいと考えています。

クリティカルシンキング入門

グラフで伝える!データ活用の新発見

グラフの特徴は? グラフに関して、以前は感覚的に理解していたつもりでしたが、今回の学びを通じてその理解がより明確になりました。例えば、帯グラフと円グラフの違いを再確認しました。円グラフは数値の大きさを強調する一方で、帯グラフは要素間の比較がしやすいという特徴があります。また、棒グラフと折れ線グラフについても理解を深めました。棒グラフは推移を強調し、折れ線グラフは変化や傾向を捉えやすくする役割があります。 分析手法は何? スライド作成における学びとして、データの解釈を示す際には基礎データを加工し、図表を用いて分析結果を表現するプロセスが重要です。しかし、その前にキーメッセージを仮説として立て、それに基づいたひと手間を加えることが大切であると理解しました。特にサンプル数が多い場合、このプロセスは複雑になることがあります。 業務にどう応用? この学びを業務にどう活かすかについても考えました。リサーチ業務では、統計データや一般公開データからリサーチペーパーを作成する際に、適切な分析視覚を導き、適切な図やグラフを選択するスキルを磨きたいと思います。企画立案業務やプロジェクトの計画・遂行においては、質的情報を効率よく示すための工夫が求められます。特に分かりづらい内容を文章で表現する際には、フォントの選択や文章の配置、配色などを意識して、効果的に伝えるよう心掛けたいと考えています。 資料提案の工夫は? 業務においては、現在取り組んでいるプロジェクトの提案資料作成において、学んだことを応用する予定です。スライドを用いる際には、「メッセージ」や「見せ方」に注意し、情報を盛り込みすぎないよう意識します。

データ・アナリティクス入門

ビジネスの答えを導く仮説と検証のサイクル学習

仮説検証の重要性とは? 改めて仮説を立てること、そしてそれを検証することの重要性を学びました。ビジネスには正解がない場合が多いですが、その状況に応じた最適な答えを出す必要があります。そのためには、良い仮説を立て、データを収集し、それを素早く検証するサイクルを回すことが極めて重要です。このサイクルを通じて問題や施策を導き出すことを再認識しました。 フレームワークはどう活用すべき? また、仮説を立てる際にはフレームワークを活用すること、その仮説を検証するためには適切な指標を選び、収集したデータが反論を排除するための情報にまで踏み込めているかどうかを確認することも新たな気づきでした。これまでの経験を振り返ってみると、「仮説~検証」については何となく同じようなことをしてきましたが、仮説が網羅的でなかったり、検証が不十分だったりしました。今後は意識してこれを実行していきたいと思います。 未然防止に役立つ学びとは? 安全衛生活動(事故未然防止活動)にもこの学びを活用します。例えば、ヒヤリハットが年に1回発生している工場と全く発生していない工場では、現状は表面的な差異を見つけて、適当な仮説を立てて施策に結びつけようとしていました。しかし、これからはもっと網羅的に問題を分析し、適切な打ち手に繋げていきたいと思います。 ヒヤリハットの原因を追究するには? まず、そのヒヤリハットが「不安全行動」や「不安全状態」のどちらから発生しているのか、「4M」のどれに起因しているのかなど、問題の発生要素を網羅的に仮説立てします。それが本当にそうであるのか、データやヒヤリングを通して検証していきます。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

クリティカルシンキング入門

新しい視点でデータを活用するヒント

データ分析の新たな視点は? データの加工や分析など、日常業務で行うことが多かったが、今まで機械的に区分していたことに気づいた。例えば、10歳刻みで分けることはあっても、19歳〜22歳の大学生という区分で考えることはなかった。しかし、高校生・大学生・社会人という区分で行動が異なることから非常に納得できた。また、MECEを意識して複数の切り口で分解することを、すぐに実践に活かしたいと思った。 効果的なフィードバック法は? 研修や会議等の企画、運営を行う際には、事後アンケートを実施している。これまでのフィードバックは、コメントや全体の感想のみを基にしていたが、アンケート取得時には役職や年次などの詳細なデータも把握できる。これにより、MECEを意識した層別分解を活用することで、現状をより具体的に把握し、改善点としてフィードバックを行いたい。より良い研修や会議の運営を目指すためにも、この手法を取り入れたい。また、営業推進業務においてもデータの取り扱いが多いので、率算出やグラフ化などを行い、データから得られる情報をしっかりと把握することで、全国への営業推進に役立てたい。 目的を持ったアンケートの活用法は? 研修や会議の計画に際しては、分解を踏まえ、自分が把握したい点や次回以降の運営のために知りたい点を事前にしっかり考えることが重要だと感じた。その結果、目的を持った事後アンケートの設問を考えることができる。アンケート取得後には結果だけに頼らず、MECEを意識した分解によって多くの情報を把握し、それに基づいて現状を知り、今後の業務に活かすようなフィードバックを行いたいと思う。

クリティカルシンキング入門

データの力で業務効率が劇的アップ

数字をどのように活用するか? 数字をただ並べるだけでなく、合計や並べ替え、比率などの作業を行うことで、数字の持つ意味をより深く捉えられるようになります。また、グラフ化することで視覚的に数字を捉えやすくなり、その意味を浮き彫りにすることができます。特に「目に仕事をさせる」という表現は、非常に印象的でした。 グラフ化の新たな視点とは? グラフ化する際には、10代や20代といった規則性ある分け方だけでなく、数字の意味を強調するために規則性がなくても範囲を設定することが有効であると理解できました。さらに、分類分けを細かく行うことも重要です。複数の分類に分けることで、見えなかったものが見えるようになり、誤った解釈を避けることができます。そのためには、自身が行った分け方が正しいのか、他に適切な方法がないのかを常に問い続けることが必要です。 業務に役立つMECEとは? また、MECE(漏れなくダブりなく)の手法について、具体的な分け方やプロセスの切り分けを改めて学ぶことができました。この手法はバックオフィスの業務において、本部集約化に向けた検討時に非常に役立ちます。各業務のプロセスを順を追って確認することで、どの工程をどの部門や担当者が担うべきかを明確にし、適切な本部移管を進められます。 日常業務での学びの生かし方 自分の業務においても、数字の合計や比率を出すだけで終わっている作業が多いことに気づかされました。これからは、「目に仕事をさせる」グラフ化というステップを取り入れ、その重要性を再確認しました。今後の業務において、この学びを生かしていきたいと思います。

クリティカルシンキング入門

スライドで印象を強める視覚表現のコツ

メッセージの伝え方で意識すべきことは? スライドや文書を使ってメッセージを伝える上で、相手の立場に立ち、分かりやすく、読みやすく、読みたくなる工夫をすることが重要だと学びました。 どうやって理解を促進する? データを図表やグラフで可視化することで、相手の理解を促進できます。その際、グラフの種類、タイトル、単位の記載に配慮し、伝えたいことが一目で分かるグラフ作りを心がけるべきです。フォント、色、アイコンを使うことで、相手に印象を与えることも可能です。言いたいことと整合させてこれらを使うことが大事です。 また、メッセージとグラフを組み合わせる場合には、順番を整える工夫が求められます。文書を読む意欲を高めるためにも、アイキャッチや文書の構成、読みやすい体裁に配慮する必要があります。 プレゼン資料に求められる工夫は? 私の業務では、最終的にスライドを作成し説明する場面が多く、今回の学びを活かす機会が多いです。スライドはプレゼン用と資料用で作り方が異なると感じています。プレゼン用はその場で言いたいことがすぐに伝わることが重要で、資料用は必要な情報ができる限り含まれていることが大事です。 スライド作成で最も重要なことは? プレゼン資料を作成するときには、相手の立場に立ち、わかりやすさを追求し、究極的には一目で分かることを目指したいです。具体的には、最も伝えたいことを明確にし、枝葉を切り落としてシンプルなスライドを作ります。また、フォント、色、アイコンを使う際には、相手に与えたい印象を明確にして効果的に利用し、一目で分かるスライドに近づけたいと考えています。

クリティカルシンキング入門

ピラミッド・ストラクチャーで説得力アップ!

ピラミッド・ストラクチャーの効果とは? ピラミッド・ストラクチャーの活用により、情報を相手に伝えやすくなることを学びました。この方法を使うことで、自分自身でも論理の妥当性をチェックしやすくなり、説得力のある内容に仕上げることができます。また、「隠れた主語」がないかを確認する視点を持つことが重要だと感じました。日常生活でも主語や述語は意識しているつもりですが、テキストコミュニケーションでは特に「隠れた主語」を意識できていないことに気づきました。さらに、複数の具体をまとめる力が不足していると感じ、演習を通してこの点を克服する必要があると実感しました。「クリティカル・シンキング入門」からさらなる成長を期待しています。 データ分析での工夫は? 私の職務は、データ分析を通じて事実を伝え、示唆を出すことです。特に事業部長への説明が多いため、準備の際にピラミッド・ストラクチャーで内容を整理することが有効だと感じました。また、私以外のチームメンバーが本社勤務であるため、チャットツールでのコミュニケーションが頻繁です。認識の齟齬を防ぎ、一度で伝えたいことが伝わるようになれば、コミュニケーションコストを削減できると考えています。 コミュニケーションコストをどう削減する? 会議の準備段階では、言いたいことをピラミッド・ストラクチャーでブレイクダウンして整理しています。また、チャットを送信する前には「隠れた主語」がないかを毎回チェックします。面倒に感じることもありますが、この作業の徹底が双方のコミュニケーションコストを削減することにつながると考え、実践を心がけています。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

戦略思考入門

顧客視点での差別化戦略の鍵

顧客視点が重要なのはなぜ? 差別化戦略を考える際には、競合にばかり気を取られず、まず顧客の視点に立つことが重要だと感じます。差別化戦略において「選択と集中」は大切ですが、同時に複数の施策を実行できれば競争力はさらに高まります。環境は常に変化するため、自社の強みも定期的に見直すことが必要です。しかし、特定の強みで大規模な成功を収めた場合、方向転換は難しく、そうした課題に対応できていない企業も多いのではないでしょうか。 海外での専門性はどう活かす? ITベンダーとして国内外で仕事をしていると、国内では顧客の要望に柔軟に対応しますが、海外では専門性がないと認められません。実際には、複数のIT技術を扱うといっても、全てを深く学ぶことは難しく、場合によっては表面的な対応に終わってしまうことがあります。また、若手社員が勉強しても、次の仕事では別のことを任されると思うと、学ぶ意欲を維持しにくく、成長を実感できないことがあるようです。企業も専門性を重視し、業務を外注することで、社内で一貫した比較や統合を行うように変わってほしいですね。私は、そのような姿勢を企業に対し提案していきたいと考えています。 自身の専門性をどう高める? 幅広く知識を習得しつつ、自分が得意とするAIやデータ分析、ソフトウェア工学の分野では積極的に情報発信を行い、自身の専門性をアピールしています。例えば、2月9日にはAIエージェントについて、2月10日にはGraphRAGについての発表を予定しており、これを確実に実施したいと考えています。

戦略思考入門

見える化で挑むコスト改革

学びで何が変わった? 今週は、規模の経済性、習熟効果、範囲の経済性について学びました。これらはコスト削減に役立つという認識は以前からありましたが、具体的に言葉にして整理されることで、より実感できるようになりました。また、効果が見られない場合もあるという説明を受け、自分自身がその点に気づいていなかったことを再認識しました。 ネット効果をどう見る? また、過去にゲーム業界、現在はIT業界にいるため、ネットワーク経済性に関しては日常的に意識する場面が多いですが、今回の学びにより、普段はあまり意識していなかった部分も含めて、再確認することができました。 固定費削減の秘訣は? 私の所属する会社はデータ分析をビジネスの柱としており、これまで競合が比較的少なく、専門職であったため高コストでも許容されていました。しかし、最近ではLLMやAIエージェントの登場で、専門職に限定されない業務も増えているため、差別化戦略を検討する一方で、コスト削減が重要な課題となっています。いかに固定費を下げ、売上や利益を向上させるかが喫緊のテーマとなっており、今回の学びは具体的な施策を検討する際の重要な軸として活用していこうと考えています。 可視化で議論進む? 今後は、各施策にフレームワークを適用して抜け漏れがないか、また見落としているメリットやデメリットがないかを整理し、可視化していく予定です。上司とのディスカッションは口頭で進むことが多いため、こうした可視化を通じて議論をより明確に進めていきたいと思います。

「データ × 多い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right