データ・アナリティクス入門

ロジックで切り開く未来への一歩

どこに問題ある? 問題を明確にするため、まずはプロセスごとに分解し、どの段階に問題が存在するかを捉えます。具体的には、What(問題の明確化)、Where(問題箇所の特定)、Why(原因分析)、How(解決策の立案)の4つのステップに沿って検討します。ロジックツリーを活用することで、体系的かつ効率的に思考を進め、見落としのない分析が可能となります。また、全体を複数の部分や変数に分解する層別分解も有効です。 仮説はどう広がる? ライブ授業では、既に把握している内容を元に分解を進め、仮説を複数立てて何を明らかにするかを検討していきます。グラフなどで可視化し、重点的に見るべき箇所を明示することで、ストーリー性を大切にしながら分析を進めています。仮説を広く立て、可能性のある原因を網羅的に洗い出す点がポイントです。 日常分析の実践は? 日常の分析業務では、ロジックツリーを活用したプロセス分解がまだ十分でないため、正確な分析を目指す実践に取り入れています。解決の4ステップに従って、原因追及だけでなく提案まで行うことを意識し、当たり前のことにも疑問を持ち「なぜ」を繰り返すことで、自然とできるようになるまで継続していく所存です。 スキル習得はどう? 今後は、データ分析に必要な専門スキルの習得にも力を入れていきます。たとえば、SQLは毎朝の学習を継続し、プログラムや統計学、機械学習については、講座終了後に専門スクールで集中的に学んでいく予定です。 フィードバックは大切? さらに、依頼された分析だけでなく積極的にデータ分析に取り組み、上司や同僚からのフィードバックを得ることで自らのスキル向上を図ります。日次、週次、月次のKPI目標の振り返りを行い、要因分析にはロジックツリーやMECEを用いてプロセスを分解し、より正確な分析を実践していきます。 情報共有は進んでる? また、分析に必要な情報収集のため、自組織や他部署のメンバーとの密なコミュニケーションを重ねながら、Webマーケティングやデータに関する知識の習得にも取り組みます。これらの活動を具体的なスケジューリングに落とし込み、着実に専門知識を身につけていきたいと考えています。

クリティカルシンキング入門

成長を実感できる振り返りの重要性

学びの振り返りをどう活かす? これまで学んだ内容を振り返ってみると、まだまだ身についていないことが多いと感じました。また、ライブ授業で他の受講者たちが積極的に発言している姿を見て、自分も講座修了後に学んだことを振り返って、しっかりと実践していこうという意識が強まりました。 問いを意識する重要性とは? 人間は考えやすいことや考えたいことを考えてしまう癖があります。自分の考えをチェックするもう一人の自分を育てることが大切だと、Week1の講義で強く印象に残りました。しかし、まだ経験や思いつきで考えてしまうことが多いと感じています。また最近、部内でのある問題に対する認識がずれていることに気づきました。この経験から、問いの形で問題を特定し、問いを意識し続けること、そして問いを共有することの重要性を改めて感じました。 コミュニケーションをどう改善するか? 長い間同じ会社や部署にいるため、相手も自分と同じ認識を持っているだろうと決めつけて話してしまうことが多いです。これからは省略せず、相手の立場に立って話すよう心掛けたいと思います。また、思いつきや自分の経験から判断してしまうことが多いため、結論を出す前に本当にその結論で良いのかを深堀りすることも意識していきます。 プロセス共有の大切さとは? 部内で検討の機会が多いため、「イシューを問いの形で特定する」、「意識し続ける(途中でずれていないか確認する)」、「検討メンバーで共有する」というプロセスを実施したいです。業務分析をする際には、データをただの数字として見るのではなく、細かく分解して検討するように心掛けます。また、日々のメールやプレゼンはなんとなくで作らず、相手に読んでもらえるように、情報を探させない、明確に意図が伝わるよう意識して作成します。 継続的な学びの習慣をどう築く? まずは、本講座で学んだことを自分の言葉でまとめ、定期的に確認する習慣をつけることから始めたいと思います。学びを自分のものにするためには反復トレーニングが必要で、一時的に業務スピードが落ちるかもしれませんが、あきらめずに実践していきたいと思います。

データ・アナリティクス入門

平均スコアだけじゃ見えない真実

講義の学びは? 今週の講義では、「目的を持った分析」「比較による分析の有効性」「データ加工時の注意点」という三点について学びました。この中で、特に印象に残ったのは「データ加工時の注意点」です。 数値評価はどう理解? 講義中には、具体例として「商品スコアを単純に平均することへの違和感」が示されました。普段、商品レビューの数値評価を何気なく見ることが多いですが、実際はその数値に明確な定義がなく、平均をとるだけでは本当に知りたい情報が得られない可能性があると感じました。 加工注意点は? 例えば、壊れやすい商品であっても、デザインの良さだけを理由に最高評価をつける場合があります。そのようなデータを基に商品を選んでしまうと、「壊れにくい商品」を求める利用者は、平均スコアに惑わされる恐れがあります。このように、データを有効に活用しようとしても、加工や解釈を誤ると誤った結論を導いてしまう点に、データの恐ろしさを感じました。 業務データの活用は? また、私の業務では会員情報や購買履歴、アプリの行動ログといったデータを扱う機会が多いです。これらのデータは、抽出方法や加工の手法次第で結果が大きく変わるため、目的が曖昧な状態で扱うと、分析結果の解釈に迷いや無駄な検証を重ね、多くの時間を費やしてしまう危険性を実感しました。 目的を再確認? 今回の講義を通じ、「何を明らかにしたいのか」という目的を明確に持つこと、そして、データの数値が何を意味しているのかを常に意識しながら扱う重要性を改めて認識しました。今後は、単なる抽出や加工を目的とせず、分析の意義と加工方法の妥当性を見極めながら、効率的で意味のあるデータ活用に努めていきたいと考えています。 基本はどう捉え? さらに、今回の学習では、データの加工技術だけでなく、データマネジメントの基本や見落としがちな常識に重点が置かれていました。今後の授業でも、こうした基本部分を特に重視して学んでいきたいと思います。

アカウンティング入門

P/Lに見る価値と現実のバランス

損益計算書の意味は? Week02では、損益計算書(P/L)の構造と意味合いから、企業の儲けの仕組みを読み解く視点を学びました。P/Lは単に収益や費用、利益の関係を示すのではなく、事業活動の結果として、どのように価値を生み出し、どのようなコスト構造を採用しているかが表れていることが理解できました。 カフェ事例に疑問は? 授業内での事例では、異なる提供価値がP/Lにどのように反映されるかが明快に示されました。あるカフェは「非日常の贅沢体験」を提供するため、客単価が高いものの内装や人件費などの費用も大きく、利益が出にくい構造でした。一方、別のカフェは「日常の小さな休息」をコンセプトに、費用を抑えながら安定した需要を捉えるモデルで成り立っていました。 選択の重みを知る? この比較から、P/Lを数字だけでなく、提供価値と費用構造の関係を踏まえて読み解く重要性を再認識しました。利益は単なる数字の結果ではなく、価値創出と費用配分の選択の積み重ねそのものであり、P/Lはその選択の結果を客観的に示すツールであると感じています。 自社評価の視点は? 学習を踏まえ、まず自社の損益計算書を「提供価値との整合性」という視点で評価したいと考えています。自社が市場にどのような価値を提供し、その価値を実現するためにどのような費用構造を採用しているのかを整理することで、収益の源泉や改善の余地を立体的に把握できると考えています。売上や利益の数字だけではなく、事業活動の実態(定性的な面)と財務データ(定量的な面)がどの程度一致しているかを確認し、今後の議論や提案の基盤にしていきたいです。 労組の分析を考える? また、労働組合の収支計算書についても、損益計算書と同様の視点で分析する予定です。組合活動が提供する価値と費用の使い方が適切に結びついているかを検証することで、事業活動とは異なる角度からも、持続可能な運営や会員への価値提供のあり方を考える材料としたいと考えています。

クリティカルシンキング入門

クリティカルシンキングで成長する日々

クリティカルシンキングとは何か? クリティカルシンキングとは、自分の考えを吟味し、目的を明確にすること、そして自分や他者の思考の癖を前提に考えることの2つで成り立っています。これらを実践することで、多角的な視点を持ち、自分自身に問いかけ続けることでイシューの設定が明確になります。 自分を疑うことの重要性 Live授業中のグループワークで「クリティカルシンキングとは○○である」というテーマについてディスカッションした際、多くの参加者が「自分を疑うこと」をキーワードとして挙げていました。その意見を参考にし、私も「自分へ問う/疑う」ことの重要性を再認識し、問いと疑いの精度を上げるよう努めていきたいと考えました。 意識したコミュニケーション方法 また、部署や支店を越えたコミュニケーションにおいては、相手に分かりやすくするために言葉を省略しないよう心掛けています。特にメールやチャット、資料を基に説明する際にはその点を意識しています。会議では、何かを決めるべき事項が明確であるとき、イシューが不明確にならないようにし、議論が脱線しないよう努めています。後輩から業務相談を受けた際には、イシューを一緒に考えることで共に成長できるようにしています。 グラフから紐解く新しい視点 さらに、グラフ作成において前例に従うだけではなく、元データを見直し、異なる視点から新たなグラフを作成できるよう努めています。これは、言いたいことが明確であり、見やすいグラフにするためです。また、公式LINEアカウントのフォロワー増加計画においても、フォロワーの年齢や地域のデータを用い、グラフを作成し分析しています。 日常に活かすクリティカルシンキング 最後に、業務に限らずあらゆる課題に対しても、イシュー設定の際には多角的に考え、自分の思考の癖を意識しながら繰り返し問うことを実践しています。このようにして、クリティカルシンキングを日常的に活用することが大事だと感じています。

データ・アナリティクス入門

データで説得力を増す!MBA流の学び

講座内容の印象は? ライブ授業のアーカイブを拝見しました。今回の講座は、ビジネスパーソンが陥りがちな視点を見直し、MBA生が効果的にデータ分析を行えるよう構成されていると感じました。他のEMBA生が適切なデータ加工を行い、ケースの課題について効果的な表を作成して発表しているのに対し、私は数値をそのまま載せ、力量の差を感じることが多く、本講座の内容は非常に参考になりました。今後、レポート作成を行う際には、本講座の内容を何度も振り返り参考にしようと思います。 定量分析の意義は? パソコンを購入する時、私は「価格」と「スペック」を重視しますが、実際にはその場の感覚で購入することが多く、定性的だと感じました。ライブ授業を通じて、定量的な仕分けと表のまとめの大切さ、スモールデータを基に仮説を立て、あるべき姿を検討することが重要であると学びました。 実践の効果は? 社内の会議や発表の場でも、本講座で学んだ仮説やあるべき姿を考えた効果的な資料作成を実践していきます。この実践により、受け手の印象が大きく変わり、営業やメーカーの社内会議でも限られたリソースの中で短期間に成果を上げることに繋がると思います。ビジネスの場では、勘や直観といった定性的な判断に偏りがちですが、一工夫して定量的にデータをまとめることで、社内で数値に基づいた効果的な判断ができるようになると感じました。 一歩踏み出すのは? 普段行っている新NISAの株式投資判断や競馬の予測など、小さなことから始めていきたいです。例えば、サステナビリティに力を入れている会社を投資の目標にして、2050年のカーボンニュートラルに向けた資金の投入度をエクセルで分析し、効果的なグラフ作成に活かせると思います。また、ビジネスの場の資料作成では、小川先生の理論を基に、受け手が効果的な判断を行えるよう努めたいと思います。

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

データ・アナリティクス入門

仮説で広がる学びのストーリー

仮説実践の難しさは? ライブ授業では、複数の仮説を立てるという基本的な部分が十分に実践できなかった点が痛恨でした。一つの仮説に固執せず、他の可能性も探る姿勢が足りなかったと感じています。また、MECEの視点で仮説を整理することも十分にできていなかったため、異なる切り口からの検証が不十分でした。 どう多角的に考えた? 仮説を立てる際には、まず複数の仮説を提示し、その中から最適なものを選び抜くことが大切です。一つの見方に偏らず、様々な要因を網羅することで仮説同士の整合性と広がりを持たせることが求められます。例えば、仮説の検討時には「ヒト」「モノ」「カネ」などの多角的な視点を意識することで、より具体的かつ網羅的なアプローチが可能になると感じています。 整理と評価はどう? 全体としては、仮説を立てるポイントが明確に整理されており、その点は非常に評価できると感じています。今後は、具体例を積極的に取り入れながら、仮説の網羅性や検証方法をさらに深めると、理解もより一層深まるでしょう。 検証法をどう考える? また、仮説を立てた後にその妥当性をどのように検証するかも重要なテーマです。MECEを実践した具体例について自分の言葉で説明できるようになると、思考の質はさらに向上します。日常の小さな問題にも仮説を導入して検証することで、実務における分析力や判断力の強化に繋がります。 チーム成果はどう見る? さらに、データ分析チームのマネージャーとして、自分自身で分析計画を立てるとともに、チームメンバーへの具体的なアドバイスや指摘ができる状態を目指すことが求められます。今回学んだ仮説思考を活用し、チーム成果を資料やグラフでわかりやすく可視化する取り組みは、今後のマネジメント業務においても大いに役立つと感じています。

データ・アナリティクス入門

チーム力で見つける新しい発見と成長

6週間の振り返りと学び 6週間の総まとめをLive授業で振り返り、演習として実践することができました。時間は限られていましたが、ブレークアウトルームでのディスカッションが非常に有意義でした。他のグループの発表やチャット欄での投稿から、同じ題材でも切り口や発想が異なる点も興味深かったです。 アウトプットの重要性を実感 アウトプットの重要性と他の人を巻き込み、様々な視点で物事を考えることの重要性や効果を実感しました。データ分析は週次のチームミーティングでの前週の結果分析や当該週のアクションプラン策定に活用しています。本講座で学んだ考え方や進め方をチームメンバーにも浸透させるため、常にアウトプットを意識していきます。 分析と仮説構築の大切さ 特に以下の3点を大切にしていきます。 1. 分析とは比較すること 2. 仮説の引き出しの持ち方 3. 仮説構築に各種フレームワークを活用できること 新しいスタイルの効果は? アウトプットを通じて自分自身にも自然に身につけ(体得する)状況にまで持っていければと思います。 Q2に記載した場面での活用を考えていますが、その進め方には特に注意を払いたいです。最初に自分の分析結果を示してからメンバーの意見を聞くのではなく、前週の結果やトレンドを全員で確認し、その上でどのような仮説や原因が考えられるかをチームで検討します。そして、その上で自分の分析結果や仮説を共有することを意識して取り組みたいと思います。 得られる効果への期待 このスタイルにより、以下の効果が期待できます。 1. バイアスをある程度取り除ける 2. 自分自身が思いもつかなかった仮説を認識できる これまでのスタイルから変えていくことで、どのような結果が得られるのか楽しみです。

データ・アナリティクス入門

実践で分かる分析の極意

基本原則は理解できた? 今週は、ライブ授業を通して6週間の学習内容を実践演習で総まとめしました。初めに、1週目から学んだ基本原則に基づく比較分析や、データの種類に応じたグラフの加工・表現方法を改めて確認しました。また、データ分析を始める前に、目的や仮説の重要性についても再認識する機会となりました。 プロセスは理解できた? さらに、問題解決のプロセス(What・Where・Why・How)や分析のステップ(仮説構築・データ収集・データ分析・仮説検証)を実践する中で、やみくもな分析を避けることや、アウトプットのイメージを持ってデータ収集を行う大切さを痛感しました。 キャンペーン分析は進んでる? 私の業務では、電子マネー決済によるキャンペーンの分析を行っており、決済データをもとに利用者の定性情報や行動パターンを把握することで、決済回数や決済金額の増加に向けた施策の提案や効果検証を進めたいと考えています。 目的は明確になった? 現状の課題は、データ分析の目的や分析する内容が関係者の間で曖昧になっている点です。そこで、まずは分析の目的や問いを明確にし、何を分析するのかを関係者間でしっかりと共有・可視化する必要があります。目的や分析対象が定まれば、データ収集を実施し、その結果をもとに仮説構築を進めます。仮説構築の際も、重点的に検討すべき点を明確化し、関係者と共有していくことが重要です。 施策は具体的になった? また、現状分析では、各種フレームワークを活用しながら、問題点やその原因、そして打ち出す施策を具体的に明確にすることが求められます。最後に、データ収集および仮説検証の結果は、関係者にわかりやすく説得力のある形で伝えられるよう、適切なグラフを選んで可視化し、報告していく予定です。

データ・アナリティクス入門

データ分析の基礎から見直す重要性

比較対象を誤解することの影響は? 分析の基本は比較にあります。特に、比較する対象が「類似性の高いもの同士(Apple to Apple)」であることを意識する必要があります。これまで自身で行ってきたデータ分析において、その認識が誤っていたと感じました。しばしば「異なるもの同士(Apple to Orange)」を比較しようとしていたことに気づいたのです。 データ作成の目的を明確にするには? また、データ作成の際には、まず「目的」を明確にすることが重要であると学びました。ライブ授業で問題に取り組んだ際、大切なポイントを見落としていたことがありました。今後、データ分析を行う際には、まずその分析の目的を再確認し、その上で分析を進めていきたいと思います。 仮説を線で考えることの重要性 さらに、仮説立てに関しても、全体像を広く理解し、点ではなく線で考えることが重要です。これにより、いくつかの仮説をより具体的に報告できるよう努めたいと思います。特に、SEOに関わる数値分析や会員登録までのユーザー動線の見直しに活用できると感じています。 効果的なデータ分析方法とは? データ分析の目的としては、以下の点に注意したいと考えています。 ・さまざまなタイプのデータの特性と、陥りがちな分析の落とし穴に注意する。 ・定量データを用いた分析の重要性を認識し、その活用を図る。 比較と改善のためのディスカッションの重要性 最近は、コンペティターのメディアとの比較や、ユーザー登録導線の参考メディアやランディングページと自社サービスの比較を十分に行えていませんでした。これを改善するため、チームメンバー全員でグループディスカッションを行い、検証結果を導き出す方法を取りたいと思います。

データ・アナリティクス入門

問題解決力を磨く成長の一歩 業務改善で未来を切り拓く

どう成長体験を感じた? ライブ授業を受講することで、初回の自分と比べ、問題解決のステップをどのように構築すべきかを未熟ながらもイメージできるようになり、成長を実感しました。講座全体を振り返る中で、自分が何を学んだのかを再認識し、理想の姿を描いたうえで現状とのギャップを把握しました。このプロセスにより、問題解決のステップを具体的に理解し、自己成長にも応用できるという確信を得ることができました。 業務目的は明確か? 原価登録業務の効率化と適正な登録タイミングの実現に向けて、改善すべき点を明確にしようと考えています。まずは、業務の目的をはっきりと認識することが重要です。自分が担当している業務だけでなく、関係全体の目的や役割を確認し、現状の状態を数値などで正確に捉えるよう努めます。その上で、目的に沿った理想の業務フローを描き、現状とのギャップを明確にすることが不可欠です。 どんな対応が必要? これを実現するために、業務フローを細かく分解し、各工程を前のステップと比較しながら問題箇所を特定します。そして、どのような対応が必要か仮説を立て、検証を進める計画です。業務の目的を達成できるフローを構築するため、必要なデータの取得方法や精度についても、関係者と十分に議論しながら取り組むことが大切だと感じています。 データ分析は適切か? また、データを収集する際には、盲目的に数値を追い求めるのではなく、あらかじめ立てた仮説に基づいて精査する必要があります。複数のフレームワークを活用しながら仮説を検証することで、思い込みによる誤った方向性に陥らないよう注意しています。こうしたプロセス全体が、業務上の問題を解決し、登録業務の効率化に大きく寄与すると考えています。
AIコーチング導線バナー

「データ × 授業」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right