アカウンティング入門

半間比が明かす企業戦略の秘密

半間比の効果は? 今週の学習では、PL(損益計算書)の半間比の見方を通して、各店舗や企業がどのように価値を創造しているかを理解できた点が非常に印象的でした。具体的には、ある業態では高コストながら高単価を狙い、また別の業態では気軽さを武器に購買数を増やすという違いがあり、半間比を比較することで経営方針の違いが明確になりました。数字の背後にある戦略を読み取る視点を身につけられたことが、今回の大きな収穫です。 決算書の読み方は? この学びを自分の仕事に活かすためには、まず自社の決算書やPLを正確に読み解く力を養うことが重要だと感じました。さらに、競合他社の決算書や業績資料と比較することで、自社の強みや改善点がより明確になると考えます。また、新聞や経済誌に掲載されている企業の業績記事に接する際も、PLや半間比の視点を持つことで内容の理解が深まり、現実のビジネスへの洞察が広がると実感しました。 行動に移すには? 実際の行動に移すため、まずは日常的に新聞などの経済情報に触れ、気になる企業や話題に上がる企業について、試算表やPLなどの財務情報を毎週調べるようにしていきたいと思います。こうした継続的な情報収集と分析の習慣を通して、財務の見方や経営判断に必要な視点を少しずつ身につけていけると期待しています。

データ・アナリティクス入門

問題解決へのMECE活用術

問題点の把握はどう進める? まず、問題点をきちんと把握し、理想の姿と現在の状況との差を捉えることが重要です。そのためには、物事を様々な角度から分析し、分解する必要があります。平均的に一括りで捉えると、真の問題を見逃す恐れがあります。ここで、MECE(Mutually Exclusive, Collectively Exhaustive)の原則を意識すると、要素を漏れなく重複なく分けることができ、問題の明確化から課題設定がしやすくなります。 数字の状況をどう把握する? 数字の状況や問題点を把握する際には、つい平均で語られることが多くなります。しかし、細部までしっかりと捉えた上でサマリーをすることが大切です。そして、いつでも元に戻れるように、プロセスを明確にしてツリー構造として残しておく必要があります。これを怠ると、感覚的な議論と空論の間を行き来することが多く、物事が進まない原因となります。 視点設定と情報分解の秘訣は? 数字や定量的情報で状況を表し、要素分解を行うことが鍵です。この際、視点の設定が非常に大切ですが、解決したい問題、本来の目標、最終目的を意識し、人に聞きながら自分の考えを伝える形で整理していきます。立ち戻る目的を明確にすることで、偏見がかからないように注意することも重要です。

マーケティング入門

逆境を乗り越える発想の秘密

スーツ業界の変化は? コロナ禍で自分がスーツを着る機会が減ったため、スーツメーカーは苦境に立たされるのではないかと考えていました。しかし、ある大手メーカーの事例を知り、スーツの需要が低下した一方で、店舗網や衣料品の製造・流通といったインフラを活かし、マスクやパジャマ向けの製品など、従来とは異なる需要を取り込む戦略に成功している点に驚かされました。この事例から、最終製品だけでなく、その背景にある全体像を分解して考えることの重要性を学び、逆境に直面した際も物事を細かく見直す姿勢が大切だと思いました。 Web集客の課題は? 一方で、自分のブログやWebアプリの訪問者数について考える中で、いわゆるプロダクトアウトのアプローチには限界があると感じるようになりました。そこで、オンラインのコミュニティや質問掲示板をウォッチし、どのような問題で困っている人が多いのかを分析しながら、次の記事のネタを考えるようにしています。今後は、より中小企業のビジネス上のニーズが把握できる場を模索する予定です。 海外需要はどう考える? また、初めからグローバル展開を目指すという話をよく耳にしますが、国内にいながら海外の消費者の需要を取り込むのは、住む環境が異なることもあり、実際には難しいのではないかと考えています。

クリティカルシンキング入門

数字に惑わされず、問いを追う

なぜ数字に飛びついた? ある対戦表を見たとき、すぐに具体的な数字に飛びついてしまったことが印象に残りました。普段は「問い」から物事を考えるはずだったのに、実際に数字を見ると、その本質を捉え切れなかった自分に気づかされました。 問い設定の意味は? この経験を通じて、まず「何について考えるべきか」という問いをしっかり立てることの大切さを学びました。そして、立てた問いは関係者と共有し、常にその意図が保たれているか確認することが重要だと思います。 根拠表現の大切さは? また、自分の意見を伝える際には、主張に対する根拠が明確であるか、抜け漏れがないかを意識するようになりました。アンケートのデータ分析など、数字に裏付けられた議論においても、プロジェクトメンバー間で「イシュー」が何であるかを共通認識に努める必要性を感じました。 行動計画はどのように? 具体的な行動としては、ナノ単科で学んだ枠組みをメモに取り、「枠組みストック」として保存しています。また、上長への学びや気づきの共有、今後の行動宣言を含む振り返りミーティングを設定しています。さらに、ミーティングやメールなどで意見を述べる際には、必ず根拠とともに考えるように心がけ、新たなアンケート分析の「問い」をしっかり立てることを意識しています。

クリティカルシンキング入門

切り口で掴む自分だけの学び

データはどう分ける? データの傾向を把握するためには、まず分解してみることが大切です。1つの切り口だけでは明確な傾向が見えなくても、別の視点から検討することで新たな発見につながります。諦めずに複数の切り口で試す姿勢が、効果的な分析の鍵です。 来場者減少の理由は? 今週の例では、美術館の来場者減少の理由を探る中で「個人客」と「大人」という要素が浮かび上がりました。しかし、これらをすぐに結びつけ「大人の個人客が減っている」と断定するのではなく、各要素を独立した切り口として扱い、さらに深掘りしてみるアプローチが推奨されます。 本当に大丈夫? また、社内アンケートの分析経験から、上司に「見つけた要素を安易に結びつけないように」と指摘されたことがあります。締切のある報告資料では、急いで結果を出すあまり、自分に都合の良い見方をしてしまいがちですが、結論に飛びつく前に「これで大丈夫か?」と自問する習慣が、正確な分析を進める上で非常に有用です。 自由記述はどう解析? 今回の例は数字データを対象にしていましたが、実際の業務では自由記述の設問を分析することもあります。そういった場合も、データを分解して複数の切り口で考察し、さらに言葉の分析方法を試してみることで、より深い理解につながると感じました。

マーケティング入門

製品ターゲティングで自分を磨く旅

どうやって商品魅せる? どのように製品を魅せるか、誰をターゲットにし、どのようなニーズを満たすのかというテーマは非常に奥深く、学びが多いと感じました。BtoCの場合、顧客は個人レベルであるため、ターゲティングの過程で幅広い客層から特定の層を絞り込む必要があります。最初からうまくいくことは少なく、方向性を転換しながら成功を収めた商品の事例を見ると非常に興味深いです。 なぜニッチが大切? ターゲティングにおいて重要なのは、製品のニッチさです。製品が特定の人に刺さることは重要ですが、それ以上に自社製品を他社製品より選んでもらうためには何が必要かを再考する必要があります。価格設定なのか、それともサービスに関連する何かか。他社の動向を分析し、その対策を考えることは必須です。 どんな協力が必要? 私自身、自部署だけでは困難かもしれませんが、他部署と協力し、他社のブランディングやお客様への売り込みポイントが自社とどのように異なるのかを社内でしっかりと確認し、対策を立てる必要があると感じています。他社にあって自社にないものとは何か、負けた要因を洗い出し、そこからどのように対応すればよいのか。また、日本の顧客に合っているかどうか、細かい点まで見極める必要がありますが、不可能なことではないと信じています。

クリティカルシンキング入門

データ分析で広がる新たな視点

データ分析の基本を押さえるには? データを分析する際には、全体を定義し、MECE(漏れなく、重複のない)を意識した仮説を立てることが重要です。これにより、さまざまな切り口でデータを見ることができ、効果的な分析が可能となります。 また、データをグラフ化することで、視覚的に分かりやすくなり、判断基準を明確にすることができます。ただし、与えられたデータだけで結論を出すのではなく、自分自身で手を動かして深く分析し、異なるデータから他の現象が存在しないか確認することも重要です。 新たな分析法をどう模索するか? 販売データの分析においては、毎月同じ切り口でデータを出している現状があるため、新たな切り口を検討し、どのようにMECEで考えていくべきかを模索したいです。提供された資料の確認の際にも、仮説を持ち、さらに分析を深めることで、他にない切り口を模索していきたいと考えています。 データに接するたびに、MECEが適切にできているか、他にどのような分析の切り口が考えられるのかをしっかり考えたいと思います。また、数字をグラフ化することで、よりわかりやすく情報を整理することの重要性を学びました。これにより、固定概念に囚われず、批判的な視点を持ちつつ柔軟なアプローチでデータに向き合っていきたいと感じています。

マーケティング入門

多角的な視点で拓くマーケティング

想定外の購買層は? 動画内で示された完全メシの主要な購買層が、自分が想定していたものとわずかに異なっていたことに気付きました。当初は20代~30代の男性をイメージしていましたが、ユーザーは多面的に存在するという事実を再認識する機会となりました。身近な事例を通じて購買者のペルソナを描くなど、複数の視点から自分の思考を見直す習慣を身につけたいと思いました。 マーケ思考の整理は? これまでマーケティングに関する業務は実践してきたものの、言語化して検討する機会はあまりありませんでした。今回、体系的に学ぶことで自身の頭の整理が進むとともに、今後の部下の指導にも大いに役立つと感じています。感性は個人で磨くしかありませんが、マーケティング視点の取り入れは誰にでも可能であるため、今後のチームの課題として積極的に取り入れていきたいと考えています。 企画評価の工夫は? また、企画を総評する際に、感性に基づく判断や好みが優先されがちであるという指摘について、現場から上がってきた企画の機能的価値と情緒的価値を分析し、伝えるためや売るために必要な要素を誰もが理解できる形で可視化・共有することが重要だと感じました。このアプローチを会議などでも取り入れることで、チームの総合力向上につながると期待しています。

データ・アナリティクス入門

仮説思考で業務が変わる瞬間

仮説の幅は広い? 仮説を考える際は、正しい答えを一つだけ見つけることが目的ではなく、論点に対する仮の答えとしてフレームワークを活用し、幅広い可能性を検討することが大切だと感じました。決め打ちに陥らず、常に複数の仮説を立てる姿勢が重要です。 仮説の意義は? また、仮説を考えることには、検証マインドの向上による説得力の増強、問題意識の向上、対応スピードのアップ、そして行動の精度向上という4つの意義があると学びました。これらの点は、データ分析にとどまらず、日常の業務においても活かせる有用な考え方だと思います。 難しさはどう? 仮説思考というと難しそうに感じるかもしれませんが、普段の業務で些細な疑問を感じたときに自分なりの原因を考え始めているのであれば、実はすでに仮説思考を実践しているのだと実感しました。今回学んだ問題解決のプロセスを参考に、日々の業務に仮説思考を取り入れることができそうです。 小さな課題は? まずは、短時間で取り組める小さな課題に対して、意識的にフレームワークを活用し仮説の幅を広げることから始めたいと思います。その上で、分析時の適切なグラフ選定や結果の分かりやすいビジュアル化といった、今まで苦手としていた分野の改善にも取り組んでいこうと考えています。

データ・アナリティクス入門

目的意識が導く新たな一歩

理解不足は何故? 「どこに問題があるのかを4つの視点で考える方法」について、これまでの学習テーマに比べしっくりこなかった部分もあり、自分の理解力不足を痛感しました。また、マーケティングの学習中に出てくる専門用語が多く登場したため、改めて具体的な事例に照らし合わせながら学ぶ必要性を感じました。 A/Bテストは何が肝心? CRMのメール発信を担当している経験から、これまでA/Bテストに取り組んできたものの、手法そのものを知っている・実施したというだけではなく、テストを行う前の目的を明確にし、AとBそれぞれの「誰が、何を、なぜ」という点をしっかり考慮しないと効果が半減してしまうと実感しました。 全体目的は明確? プロモーションなどの一部の発信手法に留まらず、事業全体の目的を明文化し、グループ内で共有することの重要性を改めて感じました。分析、課題、仮説といった学習内容からは一歩離れるものの、問題の原因や仮説を検討する前に、まず全体の目的や前提となる問題があることに気づかされました。 目的は全員一致? また、各自が担当プロジェクトの目的を意識する体制において、それぞれの目的が本当に矛盾なく共有されているのか、今更ながら疑問を感じるとともに、再確認する必要性を強く認識しました。

クリティカルシンキング入門

問題解決の視点を広げる学び

本質は何だろう? 問題解決を行う際には、まず何が問題なのかをしっかりと定義することが重要です。問題が本当にその部分にあるのか、あるいは「そもそも」といった観点で見直してみることも大切です。その後の分析やアクションを行う際にも、常に問いを意識することで、本質から逸れることなく、もしズレが生じた場合には適切に軌道修正することができます。 対策はどう考える? たとえば、チームに人手不足という問題がある場合には、人員を増やすという対応だけでなく、同時に生産性の向上や仕組みの効率化を図ることが求められます。また、システム操作が煩雑で非効率だと感じた場合には、システムの改修を行うだけでなく、補助的なツールや直感的に理解しやすいマニュアルの整備を通じて生産性の向上を目指します。こうした問題を複数の視点から捉え、それぞれに合ったアプローチを実施することが重要です。 気づきはどう引き出す? また、メンバーに対して問いの重要性を示すことで、彼らから新たな気づきを得ることができるかもしれません。定期的に自分の活動を見直し、無意識のうちにバイアスがかかっていないかを確認することも重要です。他の人から異なる視点や意見を求め、自身にはなかった新たな問いを取り入れることで、自分自身の視野を広げることができます。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。
AIコーチング導線バナー

「自分 × 分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right