データ・アナリティクス入門

数値とグラフで切り拓く現場力

平均値の違いは? 代表値の種類について学んだ内容はとても印象的でした。単純平均、加重平均、幾何平均、中央値という4つの代表値の違いを理解することで、従来は感覚や指示に頼っていた数値の選択を、論理的かつ具体的に検証できるようになると感じました。今後は、各平均値の特徴を自分の言葉で説明できるよう意識しながら実務に活かしていきたいです。また、Excelの関数を活用して算出することで、より実践的な理解が深まると考えています。 標準偏差の意味は? 標準偏差に関しても、データのばらつきや密集度を数値で把握する有効な指標であることを学びました。従来、平均値だけに注目していた自分にとって、標準偏差を組み合わせて分析する視点は新鮮でした。これからは、データの分析や仮説の立案において、平均と標準偏差の両面からアプローチすることで、より説得力ある結論を導き出せるよう努めていきたいと思います。 グラフはどれを選ぶ? また、ヒストグラムについても初めて触れる機会があり、その有用性を実感しました。今まであまり業務で使用する機会がなかったグラフですが、各グラフの長所と短所を理解することで、情報の伝達方法の幅が広がると感じました。今後は、提案書などでどのグラフが何を効果的に表現できるのか、理由をもって選択できるよう、実践的に活用していきたいと思います。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

クリティカルシンキング入門

多彩な視点で広がる思考の旅

思考の偏りをどう克服する? 思考の偏りや質問の誘導を意識しながら物事を捉えるトレーニングが必要だと感じました。ひとつのテーマに対しても個人の属性や立場によって様々な意見や視点が出てくることを再認識し、自分一人で同じように抽出するためには何ができるのかを考えました。 まず、自身に偏りがあり、考えが誘導される要素があることを認識することが重要です。それを自覚した上で、物事を捉えることで思考の幅と高さが広がると思います。 問い掛けの精度をどう向上? 骨子作成の段階で目的に対する問い掛けの精度を向上させることが必要です。取引先や関連部署のニーズ把握と、具体的なソリューション提供にこれを活用できると考えています。何をどうしたいのかをセットし、それに対してどの視点で切り口を設けるのか、現状把握が正しく行われているのかを明確に論理的にすることで、自身や自社の成果に繋げられると思います。 現状分析と課題抽出のポイント 具体的には以下の2点が挙げられます。 1. 現状分析の質の向上:意図的に通常費やしている工数を倍に設け、目的に対しての分解につながっているかを確認する。 2. 課題抽出の広がりの意識:MECEフレームワークの意識と徹底を行い、余裕を持った上司や同僚からの意見抽出の場を設定する。他者の視点の重要性を再認識したためです。

データ・アナリティクス入門

仮説思考で学びを実践、諦めない心の重要性

仮説思考で成果を出すには? 仮説思考の鍛え方について体系的に学ぶことができ、非常に勉強になりました。毎回同じような学びであっても、体系的に言語化することで再現性が高まるため、自分で実践するにも他の人にアウトプットするにも非常に参考になります。 諦めない姿勢の重要性を再確認 仮説思考の鍛え方を通じて、「諦めず・熱意を持って・仮説を考え続ける」ことの重要性を改めて感じました。理解するだけではなく、それを実際に実践し、成果に結びつけることは非常に難しいです。そのため、「諦めない」ことがもっとも大切であると過去を振り返って改めて感じます。 継続的なデータ分析の意義とは? 経営データのデータ分析については、じっくりと分析する機会はあるものの、継続的には行っていません。課題は次々に発生するため、つい短絡的に結論を出してしまいがちです。これからはしっかりと時間を確保し、仮説検証を繰り返し行って問題解決の精度を高めていきたいと思います。 タスク整理と学びのルーチン化 まずは自分のタスクを改めて整理し、優先順位の低いものは権限移譲するか、削減して時間的余裕を生み出します(9月中に実施します)。また、毎週土曜日は極力「学びと実践」の時間とし、仮説検証を毎週のルーティンとして実践していきたいと考えています(今週から開始します)。

クリティカルシンキング入門

問いが変える未来のカタチ

どんな問いが大切? クリティカルシンキングの講義を通じて、問いの重要性を再認識しました。自分や他者の考えを鵜呑みにせず、常に「本当か」と問い続けることで、従来の経験や考え方の偏りを避け、より広い視点から物事を考える必要性を感じました。 どの問いに向き合う? また、ものごとを深く考える際は、まず「今、どの問いに向き合うべきか」を明確にすることが大切だということが印象に残りました。答えや解決策に飛びつく前に、問題や課題の本質をじっくり捉えることで、正しい判断や効果的な解決策に繋げられると理解しています。 チーム作りで気づいたことは? 私は、チームの管理職として、4月以降の体制構築に取り組んでいます。各管理職やメンバーの意見や課題を参考にしながら、チームの体制作りを進める中で、表面的な意見だけではなく、その背景にある真の課題を捉えることの重要性に気づきました。対症療法に終始せず、根本的な解決へと導くためにも、問い続ける姿勢が不可欠だと考えています。 背景をどう探る? 今後は、各管理職やメンバーの意見に対して「なぜそうなのか」を問い、様々な立場から背景や潜在する課題を分析していく予定です。その上で、分析した課題をイシューとして整理し、管理職間で共有しながら議論を進め、体制構築に活かしていきたいと思います。

データ・アナリティクス入門

データ分析で変わる意思決定の未来

データ分析の意義とは? データ分析をビジネスに活用することの本質を理解し、考え方や手法を再設計して、自分のものにしたいと感じました。データ分析で課題を解決するとは、「勘と経験に頼る意思決定の方法を、データ分析を用いた合理的な意思決定へと改めること」を指しています。そのために必要なことを次のように整理しました。 シナリオ設計のコツは? まず、ビジネスに貢献するシナリオを描くことが重要です。そして、データを基にした意思決定プロセスを設計し、解消したい問題と解決する課題を言語化します。さらには、意思決定のプロセスを形式知として明文化することが必要です。 問題点は何か? 具体的な問題としては目標未達があり、その課題として購入増加、キャンセル回避、Webサイト離脱の回避、および集客増加といった点が挙げられます。これらの課題を「意思決定プロセス」に深く掘り下げていくことが今後の大きな課題と考えています。 今後の展望は? 今後の6週間では、問題と課題のさらなる言語化を進めていきたいと思っています。また、意思決定プロセスの6種類のうち、特にマーケティング型の「仮説試行型」と、経営者の思考バイアスを低減させるための経営者判断型について、さらに学びたいと考えています。そして、意思決定プロセスの形式知化を設計していく計画です。

戦略思考入門

戦略再定義で見つけるゴールの真髄

戦略の再定義はどう? 普段、漠然と使用していた「戦略」という言葉を改めて定義し直し、「ゴールを明確化すること」の重要性を再認識しました。演習問題では「ゴールが明確でない」と感じましたが、実際の業務では「手段」に目が行きがちだと気付きました。「ゴール」についても、自分が考える「目標・ゴール」ではなく、組織全体としての「ゴール」を考える必要がありますが、異なる価値観を持つ人々の集合体である組織において、その「ゴール」を設定する難しさを感じています。今後、この点についてさらに学んでいきたいと思います。 企画業務で何を見抜く? 企画業務においては、企画の実現に向けた戦略的なアクションが必要です。人事部としての目指すゴールと事業本部の目指すゴールが初めから一致することは少ないです。そのため、傾聴して相手のニーズを分析し、必要に応じて人事部から提案することで、最終的に共通の「ゴール」を設定し、実現に向けた手段を検討していく必要があります。 論理と共通解は何? 自分の考えを論理的にまとめるだけでなく、周囲の人々の状況や考えを認識し、共通する結論、つまり目指すゴールや解決策を見出していくことが求められます。本講座のグループワークでも、自分の意見を押し通すのではなく、グループとしての最適解を導き出せるよう努力しました。

データ・アナリティクス入門

平均値の裏側に潜む本当のデータを読み解く

平均値の理解とは何か? データ分析において、平均値という言葉に惑わされ、その中身を詳しく見ることを怠りがちだったことに気づかされました。改めて、目的を無視した代表値の活用が良い分析結果につながらないと感じました。平均値にも加重平均や幾何平均など様々な種類があり、それらの算出方法を学べたのはとても良かったです。 代表値への新たな挑戦 現在、自分が理解したつもりでいる部分が多いと考えています。今後は、他の練習問題にも挑戦し、世の中に溢れている代表値がどのように算出されているのかを更に考えられるように努めたいです。 分析結果をどう伝えるか? データを分析し加工することによって、相手に何を伝えたいのかを明確にし、グラフや代表値の算出を行いたいと思いました。また、公的データでも分かりやすい平均値だけを提示して受け取り手の印象に強く残す手法がありますが、代表値の裏側にあるデータの分布を調査した上で、そのデータから何が言えるのかをしっかり考えたいと思います。 データ加工で心掛けること 以下の点を心がけます: - 加工データの裏側を考える癖をつける - 自分でデータを加工し、伝えたいことが伝わるようにする - データ加工の前に必ず要件定義を行う - 様々な平均値の算出方法について、仕組みや成り立ちを理解する

データ・アナリティクス入門

マーケットの広がりを感じる分析の魅力

データ比較で新たな発見をどうする? 他のデータと比較することで、新たな洞察を見出すことが重要です。分析のプロセスとしては、まず目的を明確にし、次に問いに対する仮説を立て、その後データを収集し、最終的に分析によって仮説(ストーリー)を検証します。 どの分析視点が有効か? 分析における視点としては、インパクト、ギャップ、トレンド、ばらつき、パターンを見ることが大切です。具体的なアプローチとして、代表値(単純平均、加重平均、幾何平均、中央値)やばらつき(標準偏差)を使うことで、データの特徴を理解します。 仮説検証で気づく新たな問題は? 提案する際に、自分の仮説を立証するためのツールとして、これらの手法を使いたいです。仮説には正解がないことから、むしろ仮説が間違っている場合は、実際の状況とのギャップに気づきやすくなり、新たな問題発見につながります。ですので、間違った仮説を立てることも恐れず、仮説の幅を広げたいと思います。 勘と経験を超えて新たな仮説を 長年、勘と経験で仮説を立てていましたが、自分の思考範囲を超えた仮説を立てることで、マーケットの状況を広く知り、新たな問題点に気づけるようになります。また、いろいろなグラフを作成し、自分の仮説に対して一番説得力があるものを比較してみたいと考えています。

データ・アナリティクス入門

データで挑む問題解決の旅

問題解決の順序はどう? 問題解決のステップとして、「What, Where, Why, How」の順序で進めることが重要です。やみくもに分析を開始するのではなく、順序立てて進め、数字に基づいたストーリーを構築することが求められます。データ分析においては、比較対象をはっきりさせ、集めたデータをしっかりと加工し、原因を特定する努力が重要です。 採用改善はどう進める? 採用手法を模索する中で、SNSや自社サイトの採用ページの改善を進めるには、コンバージョン率やファネル分析を活用して、離脱ポイントを特定することが有効だと考えました。それにより、コンテンツの見直しも可能になります。 企画提案の進め方は? このように分析を進める際は、初めに仮説を立て、結論のイメージを持つことが肝要です。何のために分析をするのか目的を明確にし、課題を特定するステップで進行することが大切です。特に、来年度に向けての企画提案の時期においては、データを活用して説得力のある資料を作成したいと考えています。そのために、データ分析の手法を復習し、自分自身の知識として確立する必要があります。また、データをさらに深く理解するためには、エクセルの関数についても知識を深めることが必要そうです。これについては、AIを活用し、日々学び続けたいと思っています。

戦略思考入門

戦略思考で未来を切り拓く秘訣

戦略思考を深掘りするには? 戦略思考について改めて考えてみました。具体的なフレームワークを用いて書き出してはいないのですが、一部については無意識に頭の中で実行していたようです。ですが、文字に起こすことにより、自分の理解を深め、より具体的な形にすることができました。 進捗確認のポイントは? 新規プロジェクトの立案だけでなく、進捗の確認の際にも、「ゴール確認→環境分析→捨てる勇気」といったプロセスを繰り返すことで、効率的かつ効果的な結果を得られると感じます。さらに、最新の動向に基づいた分析が必要だと考えています。マニュアルや慣習に依存しがちな面があるため、それにも注意を払いたいです。 自分の言葉は合ってる? また、他人の話を聞いてわかった気になるのではなく、自分の言葉でアウトプットすることも重要です。目標設定だけでなく、その目標に至る過程、特に「捨てられるものはないか」を意識することが肝心です。慣例的に行っていることが本当に必要なのか、利益が停滞していないか、しっかりと精査する必要があります。 変化にどう対応する? さらに、時代の流れを敏感に捉え、情報収集を怠らないようにし、過去の成功体験に囚われない姿勢が重要です。自社や自分の強みを振り返り、差別化を意識し続けることが求められます。

戦略思考入門

フレームワーク組み合わせで深まる洞察

自分の仕事にどう活かす? 3C分析やSWOT分析といったフレームワークの名前は知っていましたが、今週の学習を通じて、これらを自分の仕事にどのように活用すればよいかが少しずつ見えてきた気がします。特に、私の属する業界では3C分析をベースに、それぞれの要素にSWOT分析を適用することで、より深い洞察が得られるのではないかと考えるようになりました。フレームワークを組み合わせて使用することも効果的だと言えます。 新戦略の視点、何が必要? 私の仕事では、部門の新しい戦略を考えるために、競合他社の分析をかなり詳細に行ってきました。しかし、それによって自社のパフォーマンスがなぜ今の状態にあるのかを分析する際、競合が優れているのか、自社の戦略が不十分なのかだけでなく、市場全体や業界の環境についても視野に入れる必要があると改めて気づきました。この視点を実践していきたいと考えています。 来期計画はどう描く? 来年2月には来期計画を経営会議で報告する予定です。そのために、マクロ環境分析を丁寧に行い、これまで積み上げてきた競合他社分析や自社分析と組み合わせて3C分析を行ってみたいと思っています。その際には、各要素においてSWOT分析も取り入れ、多角的な視点で分析を行い、来期の計画策定に役立てるようにしたいと考えています。

「自分 × 分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right