データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

データ・アナリティクス入門

平均に隠されたデータの真実

代表値の意味は? データを理解する際、代表値の考え方が基本であると学びました。代表値には単純平均、加重平均、幾何平均、中央値などがあり、たとえ二つの集団で平均値が同じでも、ばらつきの度合いによって集団の実態は大きく異なることがわかります。ばらつきは標準偏差という指標で表され、また、グラフを用いてデータを視覚化することで、説得力が増すことも学びました。 報告書のポイントは? 報告書にデータやグラフを用いる際には、より意味のある情報を見出すことが重要です。平均値だけでは集団の性質を十分に理解できないため、ばらつきなど他の要素も加味し、「本当にそう言えるのか?」と多角的に考える必要があると感じました。 分析目的は何? そのため、まず何のための分析なのか、その目的を明確にすることが大切です。次に、必要なデータを特定し、信頼できる情報源から取得すること。そして、代表値や標準偏差をどう活用すれば集団の性質が理解できるのかを考慮しながら、データを適切に扱いたいと思います。

データ・アナリティクス入門

仮説で切り拓く課題解決の道

実践的な手法は? フレームワークを活用して問題解決に取り組む重要性を再認識しました。かねてから仮説を立てる意識はありましたが、3Cや4Pといったツールを具体的に活用する方法を学んだことで、より実践的なアプローチが可能になったと感じています。 仮説の違いは? また、問題解決の仮説と結論の仮説の違いや、過去・現在・未来といった時間軸での仮説の切り口についても学びました。これらの考え方を今後のフレームワーク活用に組み合わせることで、より柔軟かつ具体的に問題に対応できると期待しています。 地域課題の対策は? 日常業務においては、無意識のうちに問題解決の仮説と結論の仮説を使い分けながら、地域ごとの課題や効果的な解決策を検討してきました。特に、地域が抱える課題に対して多角的な打ち手を検討する際には、課題解決の基本となる仮説思考が大いに役立っています。一方、他地域の成功事例を取り入れる場合などにおいては、結論の仮説を意識することで、より具体的な方向性が見えやすくなりました。

データ・アナリティクス入門

数字が導く明日の解決策

問題箇所はどこ? 問題個所の特定は、次のアクションプランを考える上で非常に重要です。数値に基づいて問題箇所を洗い出し、優先順位を明確にすることで、納得のいくアクションプランを策定できます。また、数字に紐づく具体的な行動も同時に把握することで、プロセス全体の見直しの基準が整います。 課題解決はどう進む? 課題解決は、問題をプロセスに落とし込みながら進めることが求められます。What、Where、Why、Howといった基本の枠組みに沿って対応することで、業務改善の手法の一つとして、DX化推進の取り組みも効果的に実施できるのではないでしょうか。 目的設定はどう? 目的の設定においては、まず問題や課題を洗い出し、その中から複数ある項目に対して優先度を付け、分析と順位付けを徹底します。その上で、アクションプランを策定することが求められます。さらに、UI/UXに関わる場合はA/Bテストを取り入れ、スタンダードなフレームワークに沿った進め方を実施することが重要です。

データ・アナリティクス入門

仮説で挑む学びの実験室

仮説はどう整理する? 仮説を立てる際は、まず複数の仮説を考え、その中から適切なものを絞り込むことが重要です。それぞれの仮説が互いに網羅性を持つように、さまざまな切り口で考えを広げる必要があります。 データは十分かな? 次に、立てた仮説に基づいて分析に必要なデータを収集します。もし手元に十分なデータがない場合は、誰にどのように聞くかを決め、比較のためのデータも合わせて収集しておくことが求められます。 仮説の基本って何? 仮説思考とは、目的(コミュニケーションや問題解決)と時制(過去・現在・未来)を整理しながら、結論を導く仮説や問題解決のための仮説を立てる考え方です。 ギャップをどう埋める? 施策を検討する際は、現状(ASIS)と目標(TOBE)とのギャップ(GAP)に着目し、その差を埋めるために仮説を構築します。メンバーと意見を交わしながら、多くの仮説を出し合い、その中から絞り込みを行い、最終的に必要なデータを集めるプロセスが重要だと感じました。

データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。

アカウンティング入門

数字が語るビジネスの秘話

数字だけじゃ足りる? 今回のナノ単科講座で、財務諸表のP/LとB/Sについて学んだ際、単に数字を眺めるだけでは十分な情報は得られないと実感しました。企業のビジネスモデルや提供価値を踏まえ、売上、原価、資産、負債といった各構成要素を想像することで、初めて数字の背後にある意味を読み取ることができると感じました。 部署でどう活かす? B/SとP/Lの基本理解が深まった今、これらは会社全体の最終結果指標とするだけでなく、管理会計の場面でも重要な役割を果たすと考えています。自分が直接携わる部署で、計画立案や実績管理に活かすためにも、B/S・P/Lの作成に取り組んでみたいという意欲が湧いています。部門の財務構造と全社の財務の連動を理解することで、より広い視野から部署の投資活動を考えることができると期待しています。 未来の実践は? また、Q2とほぼ同じ内容になりますが、この学びを活かし、今後は自部署でのB/S、P/L作成にも積極的に取り組んでいきたいと思います。

アカウンティング入門

数字で紐解く未来への戦略

数字の基本は何? アカウンティングの定義について改めて学び直しました。以前は教わっていたにも関わらず忘れていた部分もあり、「数字」が説明の基本であり共通の言語であると再認識できました。この「数字」は、事業の過去、現在、そして将来を繋ぐ重要な指標であると感じました。 同じ手法で良いの? 毎月、また期ごとの決算では特にPLやキャッシュフローといった数字に触れる機会があります。しかし、これらの数字を基に短期、中期、長期のアクションを考える際、実際の行動計画が常に同じ手段に頼ってしまい、思うように状況を変えられないことがあります。今回の講座を通じて、財務数値の本質的な意味を再確認し、具体的なアクションに活かせる知識を身につけたいと考えています。 業種ごとの差は何? また、業種によって注目すべき財務諸表の数値が異なることから、なぜその数値に注目するのかという視点の違いについても学ぶことで、より広い視野を持ちビジネス全体を俯瞰できるようになりたいと思います。

データ・アナリティクス入門

日常の比較で見つける学びの光

比較は本当に必要? 分析に取り組む際、まずは比較が基本であるということを改めて実感しました。今回の学習を通じて、日常的に行っていることでも、再確認する必要があると感じました。 目的をどう捉える? また、データ分析を行う際には、その目的を明確にすることが不可欠です。何を明らかにしたいのか、どのようなデータを使い、どう加工して分析するのかを事前に整理することで、分析の精度が向上します。 結果をグラフで見せる? さらに、得られた結果をどのようにグラフで表現するかも非常に重要です。グラフは視覚的に情報を伝える強力なツールであり、分析結果を見やすく、分かりやすくするためには適切なデザインや構成が求められます。 業績をグラフで解説? 会計データを取り扱う中で、毎月の業績報告においても、的確な分析が会社の問題点や改善点を浮き彫りにすると考えます。分析結果を見やすくグラフ化することで、その内容を具体的かつ説得力のある形で提案できる点が大きなメリットです。

戦略思考入門

受講生が語る戦略のひととき

ターゲットの重要性は? 自社や競合の状況を整理し、まずはターゲットとなる顧客を明確に定めることが基本です。ターゲット顧客の視点で、どの施策が意味のあるものかを検討し、差別化すべき相手を意識することが重要です。 持続可能な戦略は? その上で、差別化のための施策案においては、実現可能性や持続性についても十分に考える必要があります。戦略の検討は、顧客ニーズに合わせた具体的なアプローチとなるよう心がけます。 ポジショニングは? また、戦略立案の際には、ポーターの基本戦略を活用してポジショニングを明確にし、VRIO分析を通じて自社の強みを活かしながら差別化を図ることが求められます。 実践する理由は? さらに、クライアントとの対話においては、ありきたりなアイデアではなく、今週学んだポイントを実践し、深く広く検討する姿勢が必要です。この経験を機に、これまで十分にできていなかった自社分析をしっかりと行い、今後の戦略策定に役立てていきたいと考えています。

アカウンティング入門

数字で読み解く戦略の秘訣

どうして定量視点が大事? ビジネス全般において、定量的な要素を取り入れることで価値を生み出せると知り、普段からその意識を大切にしています。これまでハードルが高いと感じていたアカウンティングも、語源に立ち返った説明で基本が理解しやすいと知り、苦手意識を少しずつ克服できたと感じています。 どうして財務分析を重視? また、これまで経験や感覚、他者からの情報に頼って戦略を立案していた私ですが、財務三表を読み解くことで企業の状態や価値を正確に把握し、その情報を戦略立案の重要なリソースとしたいと考えています。アカウンティングの知識を活用することで、戦略の妥当性や正当性をより一層高めることが目標です。 どう実践で知識定着? 具体的な取り組みとして、毎日1本の動画を視聴してアカウンティングに関する知識を深めるほか、1日30分の学習時間を設けることにより知識の定着を図っています。さらに、週末には企業ごとに財務三表を分析し、実務に役立つ経験を積むよう努めています。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。
AIコーチング導線バナー

「本 × 基本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right