データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

クリティカルシンキング入門

思考のバランスを育てて、新たな視点を得る

偏った考えは何故起こる? 考えには偏りや制約があることを学びました。人は無意識のうちに自分の好きな考え方に偏りがちで、情報を集めたり思考を巡らせたりしています。このため、重要な情報を見落としてしまい、結果として結論が変わることもあります。また、演習を通じて、制約がないと逆にアイディアが広がりにくい特性があることに驚かされました。 どうして自問自答する? 「もう1人の自分を育てる」ことの重要性を感じました。結論を導き出す際には自問自答を繰り返すことが大切です。業務においては、様々な情報を幅広く浅く得ることが求められますが、それらの中から何が重要なのか、どこまで深掘りすべきかを自問しないと表面的な情報だけで結論を下してしまいます。講義で学んだ視点、視野、視座といった多角的な視点を通じて、手元の情報が十分かどうか、なぜそのように考えたのかを問い続けることが重要だと理解しました。 情報をどう活かす? 私の所属する部門では、日々膨大なデータや事象が発生し、担当者から報告を受けていますが、私はそれらの情報を点で捉えがちです。学んだ「もう1人の自分を育てる」方法を通じて自問自答を繰り返し、思考の偏りをなくしてフラットに物事を捉えられるよう努力しています。これにより重要なポイントに気付け、本質を捉えられるようになると考えています。 目的は何から整理する? 目的を整理する際には、何が目的で、誰に何をどう伝えるのか、必要な情報をフラットな目線で整理します。情報収集が終わった後で、その情報が十分か、様々な視点で再確認することが重要です。最終的な結論に際しては、自分が正しいと考えるだけでなく、もう1人の自分を作り出し、なぜそう考えるのかと問い続け思考を深めていきます。 他者の意見は役立つ? こうしたプロセスを進めるにあたり、他者の意見も取り入れながら、自分の思考の偏りや浅さを確認し、より良いアウトプットを目指しています。

クリティカルシンキング入門

情報を分解して新たな可能性を発見

グラフ化の重要性とは? 分解を行うことで、解像度が向上することを痛感しました。特に、グラフ化の重要性を理解し、視覚的に情報を把握するのは新鮮で面白い体験でした。切り口が見つかると、その観点に注力しやすくなるものの、さらに多様な切り口を考えることも重要です。新たな発見を確定的な答えと見なしすぎず、分解を進めることで結果の変化が生じる可能性も意識するべきだと感じました。手を動かすことで初めて見えないものも浮かび上がり、「見つからなかった」ということ自体も価値のある結果と捉えられる点に気づき、はっとさせられました。 MECEをどう意識する? 分解を行う上で重要なのは、常にMECE(漏れなくダブりなく)を意識することです。これにより、目的に沿った分解を進められます。日常の業務において、分解を実施する際は次のポイントを意識しています。①全体を正しく定義しているか、②分解が目的に沿っているか、③他者からフィードバックを得て、自身の思考の癖を補正することです。 分解の応用例は何か? 具体的には、データが扱われるさまざまな業務に応用が可能です。例えば、備品の在庫管理や発注予測、さらに社内コミュニケーションを活性化するイベントでも有効です。特にアンケート形式でデータを収集する際には、設問設計が非常に重要であり、目的に応じた分析の切り口を試行錯誤しながら模索したいと思っています。 どのように課題を洗い出す? 現状の業務運用における課題を洗い出すためには、データを多様な切り口で分解し、仮説を立てることが欠かせません。特に、MECEを意識し、分析の目的を見失わないようにすることが大切です。備品の在庫管理では、現状データを分解し、傾向を見出すことで在庫の無駄を排除し、適正な発注を図ります。また、社内のコミュニケーションイベントでは、プロセスごとに課題を明確化し、分解した結果に基づいて翌年のアンケート設問設計を見直していく予定です。

戦略思考入門

広がる視野とフレームワーク活用の力

顧客の声をどう活用する? 営業現場で実際に寄せられる顧客の声には大きな影響力があり、似た経験や考えを持つ相手の意見に賛同しがちです。しかし、それに引っ張られるだけではなく、顧客を取り巻く環境や変化、外部環境にも目を向けることが重要です。そこでPESTや3Cなどのフレームワークを活用することで、幅広い視野から情報を整理し、分析結果をもとに優先順位を決定することが必要であると感じました。 メディカルプランにフレームワークを使える? また、今後発売する製剤のメディカルプラン作成にも、同様のフレームワークを活用できると考えています。10年後のブランドビジョンを達成するために重要な成功要因(KSF)を設定する際、PESTを活用して業界の状況を把握し、3Cを用いて市場、顧客、競合、自社を分析する必要があります。さらに、SWOTを用いることで、現在の外部環境や疾患領域における自社製品の立ち位置を明確にし、製品で解決できるアンメットニーズを見極めることができます。分析された情報や顧客、患者から得られた声について議論を重ね、戦術に落とし込んでいくことが求められます。 競合の情報収集はどう進める? 具体的には、疾患領域の発生率や患者数の動向診断、治療法の変化について、情報の偏りがないよう広く情報収集を行います。特に、発生率や患者数などの定量データは、客観的なデータ収集を徹底します。また、新しい治療に関しては、専門家からの意見を収集することで、論文になっていない定性的情報も参考にします。 さらに、競合製品の情報収集として学会発表や論文からの基礎、臨床研究を行い、競合の戦略を分析します。そして、競合の立場になってPEST、3C、SWOTを活用し、キーとなる戦略を理解します。自社製品においては、競合製品に勝っている点や劣っている点について、基礎研究や臨床研究を通じて対策を講じ、関連部署と連携して方針を決定していきます。

クリティカルシンキング入門

伝わるスライドづくりのコツ満載!

適切なグラフの選び方とは? 相手に伝えたいことをスライドで表現する際に重要な点は以下の通りです。 まず、グラフの種類を理解し、伝えたい内容に応じて適切なグラフを選ぶことが大切です。スライドは極力シンプルにし、必要な部分にのみ装飾や色を付け加えるよう心掛けましょう。また、伝えたいメッセージの順番に合わせて図表を配置し、読み手の視線が自然に左から右、そして上から下に動くように工夫します。さらに、読みたくなる文章になるよう、アイキャッチを加えたり体裁を整えたりして、視覚的に引き込みやすくすることも重要です。 準備段階で意識すべきことは? 「スライドを作る前段の労力」という言葉が特に印象に残りました。相手に伝えるためには、データの収集から見せ方、文章の工夫まで多くの努力が必要ということを改めて理解しました。これまで学んできたデータの分解や文章作成の注意点を見直し、実践に活かしていきたいと考えます。 例えば、オリエンテーションのスライドでは、読み手の視線の動きを意識し、文章の硬軟に気をつけて作成することが求められます。メール作成においても、どうすれば学生がすぐに読んでくれるかを考え、アイキャッチを置くことや体裁を整えることが重要です。これによりパッと目に入ってきやすいメールが作成できます。 見直しの重要性をどう考える? スライドを作成する前には、まずそのスライドで何を伝えたいのか、その目的を明確にすることが不可欠です。その目的に沿って、必要な情報を考え、収集します。スライドを完成させた後、装飾が過剰ではないか、重要なポイントが一目で分かるか自分で見直すことが必要です。また、メールなどの文章を作成した後には、自分でも新鮮な目で見直し、伝えたい情報がスムーズに入ってくるか確認するよう心掛けます。 このように、伝え方を工夫することで、相手に確実にメッセージを伝えられるよう努めたいと思います。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

データ・アナリティクス入門

データ分析の要点と活用法を深堀りするコツ

Week6での気付きは? Week1から学んでいたことが、ようやくWeek6で腑に落ちた感じがしました。 仮説思考の重要性とは? ライブ事業では、ストーリーを立てて分析する方法を具体的に学びながら復習することができました。 よい分析のためには「仮説思考」が重要です。まず目的を明確にし、問いに対する仮説を立てます(例:打率ではなく失塁率が高い選手が原因ではないか)。次にデータを収集し、その仮説をデータで検証します。仮説がデータにより証明されなければ、新たな仮説を立て直します。 データ収集はどう進める? データ収集の手段としては、検索エンジンや公開データ、アンケートやABテストなどがあります。 分析を進める際の5つの視点として、以下の点が重要です: - インパクト:影響度の大きさ - ギャップ:何がどのように違うのか - トレンド:時間的な変化の傾向 - ばらつき:分布に隔たりがあるか - パターン:法則性があるか WEBマーケティング分析のポイント グラフ化のステップとしては、まず仮説やメッセージを明確にし、比較対象を決めて、適切なグラフを選びます。 WEBマーケティングの売上に繋がりやすい顧客の分析には、以下の点を考慮していきます: - 企業規模や購入製品群(リピート購入か、多種製品群を購入しているかなど) - 地域による差異 - 製品の月別の差異 - 顧客情報の獲得経路の有効性 これらをMECEに分解し、先入観を避けつつ仮説検証を進めます。 来月以降、少し余裕ができるので、上記の分析を進め、WEBサイトの改善を図ります。ロジックツリーの活用で細かく分解しつつも、Week6の講義にあったとおり、目的に必要な分析範囲を見極めたいと思います。また、メンバーに説得力のあるプロセスを踏み、説明することも重視したいと思います。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

データ・アナリティクス入門

ロジックツリーで退職分析に挑戦

自分に関係付ける重要性とは? どの内容も聞いたことがあるものでしたが、自分に関係付けて考えたことがないと気付き、少し恥ずかしい思いをしました。特に、ロジックツリーについては知識としては持っていたものの、実際に描くことはほとんどありませんでした。今後は退職分析において、要素分解を試みたいと思っています。こうした学びに必死になって取り組める環境に飛び込んで良かったと、改めて感じています。 問題解決の思考法はどう実践する? 問題解決のプロセスとして、What(何が問題か)、Where(どこに問題があるか)、Why(なぜ問題が起きているか)、How(どうするか)の順に考えることを学びました。しかし、私の場合、特に「Why」にこだわりすぎて哲学的になりすぎたり、わからなくなってしまうことがあります。そのため、この順番通りに愚直に考え、PDCAサイクルのように思考を回していきたいと思います。 人事データの分類方法は? 私は人事部でデータ分析を担当しています。ロジックツリーにおいて、人事データに関する情報は、「個人情報」や「雇用情報」などに分類されます。具体的には氏名、生年月日、性別、入社日、部署、役職、資格、経験、語学といった情報です。これをMECEにするためには、さらに細かく分ける必要があると感じました。また、人事データという漠然としたカテゴリーから、具体的に項目を洗い出すことが可能だと思いました。 実践のために心掛けることは? 実践においては、手を動かし、描き出すことが重要です。周囲のメンバーと積極的に対話し、多角的な意見を収集するよう努めたいと思います。同時に、目的を明確にすることを忘れないように心掛けます。そして、私は製造業に勤めていますので、「直接部門」と「間接部門」を混同しないよう、気を付けて分析していきたいと思います。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

デザイン思考入門

発散と共鳴で生まれた革新

どんなデータで戦略化? 私の顧客は主に社内の営業担当で、取得できるかどうかに関わらず、どのようなデータがあればより戦略的な活動が実現できるかというアイデアを集めるブレーンストーミングが面白いと感じています。現状、データ提供側は、こうしたデータをもとに顧客の考えや行動を理解し、営業がその仮説に基づいた行動に移ることを前提としているため、実際のデータ活用にはつながっていないと考えています。そのため、単に可視化しているデータに対する意見収集にとどまらず、営業として必要なデータについても積極的に意見を集めたいと思っています。 伝え方はどう変える? 既存のデータの可視化においては、私自身が顧客(営業)視点で開発を進めています。しかし、システムベンダーとの要件定義の際、どうしても自分が実現可能だと感じているアイデアしか伝えがちでした。そこで、直近のシステム改修にあたっては、実現が難しいかもしれないアイデアも含め、幅広い提案をもとに話し合いを行いました。 代案提示の意味は? その結果、実現不可能に見えるアイデアに対しても、ベンダー側からは「こういった形なら実現可能」という代案を提示していただくことができました。これにより、自己完結する前にアイデアを言語化し、関係者に発散することの重要性を学びました。 参加者選定どうする? また、ブレーンストーミングの手法についても新たな学びがありました。これまでは、同じグループや部内で取り組むレクリエーション的なブレーンストーミングにおいて、出されたアイデアがどこか似通っており革新的なものを得られなかった印象がありました。今回、出したい成果に合わせて参加者を選び、初めからブレーンストーミングの設計を行うことで、以前感じていたもやもやの原因がわかり、スッキリとした気持ちになりました。

「データ × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right