データ・アナリティクス入門

偏差値では語れない実感

平均に秘めた疑問は? 教育現場では、単純平均ばかりが重視されがちです。標準偏差を基に算出される偏差値は、詰め込み教育の象徴とされることもありますが、標準偏差を無視すると真実を見誤る可能性があることを、ぜひ周囲にも伝えていきたいと思います。 統計教育の難しさは? 私は高校で数学の教員を務めており、新課程において数学の統計分野が必修となったため、標準正規分布まで教えることになりました。この単元は多くの数学教師にとって教えにくいと感じられがちですが、実際に社会人になってから最も役立つ知識であると実感しています。実際、校内の制度を変更する際には、正規分布に基づくデータを示すことで説得力を得た経験があります。 定量分析に挑戦すべき? また、私は生徒の成績データを扱う部署に所属しており、統計の知識はすでに成績データの分析に活用されています。一方で、生徒募集に関しては、一般企業での営業活動に例えられるように定性データが中心で、定量データの解析が進んでいません。そこで、データ収集の方法を見直し、次年度から定量的な分析を強化していこうと考えています。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

データ・アナリティクス入門

仮説で開く未来への扉

仮説の意義は何? 普段は無意識に仮説を活用していましたが、今回改めて仮説について深く考える機会となりました。問題点に対してフレームワークを用いて仮説を立てることで、対応が迅速になるという認識はこれまであまり持っていなかったため、今後はより丁寧に仮説を構築し、その正しさを確認しながら業務に取り組んでいきたいと考えています。 仮説の落とし穴は? 実際に仮説を立てる際、つい思い込みに基づいた仮説になってしまうことが印象に残りました。そのため、クリティカルシンキングを意識し、より網羅的に状況を確認するよう努めます。また、困りごとが発生した場合、ユーザーが直面している問題をフレームワークを活用して洗い出すことも重要だと感じています。特に4Cの視点はこれからも大切にしていきたいです。 施策はどう進める? 新しい施策を検討する際には、4Cを活用して仮説を構築し、その仮説に基づいて必要なデータを収集し、提案へと繋げていくつもりです。データを集める際は、自分のバイアスに左右されず、幅広い視点で情報を整理するよう心がけたいと思います。

データ・アナリティクス入門

論理の力で切り拓く学びの軌跡

何を明らかに? まずは、最初のステップとして「何を明らかにしたいか」を再認識しました。what‐where‐why‐howの視点で、どの問題にどう向き合うかを意識する必要があると感じました。 ロジックの使い方は? また、whereを検討する際、単に箇条書きで列挙するのではなく、ロジックツリーなどを活用することで、漏れなく観点を広げられることが重要だと認識しました。 実践はどう進める? すぐに実践できるイメージはまだ固まっていませんが、まずは身近な問題を洗い出し、関連するデータを収集しながら、常に何を知りたいのかを考えていこうと思います。実務への落とし込みはまだ模索段階ですが、具体的な数字を使いながら学んだ内容を繰り返し適用することで、定着を図りたいと考えています。 業務整理はどうする? 改めて、自身の業務における問題点や知りたい情報を明確にするため、業務内容の整理が必要だと感じました。また、仮説を設定する際には、フレームワークだけでなく思考プロセスも磨く必要があると実感し、積極的にスキルを向上させていこうと思います。

クリティカルシンキング入門

データで見えた「新たな発見」の重要性

視覚的資料の効果的な使い方とは? 図や表などの視覚的資料を用いることで、内容の理解が促進されることを実感しました。データを分ける際には、最初に大きく分類し、後で細かく分けることで、必要に応じて簡単に異なる切り口に変えられることを学びました。切り口を考える際、自分なりの解釈を持たずに分けることが重要だと感じました。 正確な業務報告のために何を意識する? 業務結果を報告する際、実際の数字やグラフを交えた説明は理解されやすいと感じました。一方で、結論を先に決めてからデータを用意する場合、違うデータが出たときに戸惑うことが多かったです。偏見なくデータを見ることで、新しい結論や発想に至る可能性が広がると感じました。 偏見を排除してデータを分析するには? 偏見なくデータを収集し、そこから得た結論を説明する際、もれなくダブりなく分析することで、より詳細な結論や議論の種となる事項を挙げられるようにしたいです。また、自分や他者が提出したデータを見る際には、もれなくダブりなくなっているか、恣意的なデータになっていないかを意識したいと思います。

データ・アナリティクス入門

オンライン手続き改善のデータ分析方法

データの見せ方は? 分析の基本は比較であり、どのデータをどのように加工するとわかりやすいかを考えながら進めることが重要です。データにはさまざまな種類があり、それぞれに応じた加工やグラフの見せ方があります。データ分析を始めるにあたっては、「目的」の確認や「仮説」の設定とその検証が欠かせません。 オンライン離脱はなぜ? 私たちのチームでは、お客様に対して紙の手続きではなく、ウェブサイトでのオンライン手続きを推奨しています。しかし、オンライン手続きを行っているお客様がどの段階で離脱しているのか、また、紙を取り寄せるお客様の属性や動機がどのようなものかを理解し、分析する必要があります。 改善点の見極めは? 具体的には、オンラインで離脱しているページやそのユーザーの属性、さらに紙手続きを行っている方々の属性や動機に関するデータを収集し、オンライン手続き率を向上させるためのボトルネックを特定することが目指すべきゴールです。仮説を立てながら慎重にデータを分析し、検証するプロセスを通じて、この課題に取り組んでいきたいと思っています。

データ・アナリティクス入門

比較で見える!分析力の向上への道

正確な分析を行うには? 分析においては、まず比較が重要です。そのため、目的を明確にし、適切な比較対象や基準を設定することで、正確な分析が可能になります。データはただ加工すれば良いというものではなく、それぞれのデータの種類に応じた適切な加工方法や見せ方を考える必要があります。分析を始める前には、目的と仮説を確認することが重要です。 ゴールの明確化が成功の鍵? プロジェクトの進捗管理では、各マイルストーンやゴールを明確にし、進捗を把握するために必要な情報を整理しなければなりません。また、各タスクの進捗状況を可視化するためには、適切なデータ加工が求められます。これにより、課題をより効率的に把握できます。 早期検出につなげるには? プロジェクトの進捗状況を確認するためには、分析に必要なタスクや情報を特定し、各タスクの進捗を定期的に把握することが大切です。さらに、各タスクの進捗が他のタスクにどのように影響するかを知るために、適切なデータの収集と加工を行う必要があります。これにより、プロジェクトの課題を早期に検出したいと考えています。

データ・アナリティクス入門

比較と分析で拓く学びの未来

目的は明確ですか? 分析を始めるにあたって、まず目的と最終ゴールを明確に設定することが重要です。これにより、次に行う比較対象の設定や分析手法の習得がスムーズに進み、上席が判断しやすい情報を提供できるようになります。 比較で何が分かる? 分析の本質は比較にあり、対象を明確にすることが成功の鍵となります。現状では、課題に対する意識はあるものの、十分な分析ができていなかったり、仮説はあるものの分析に着手する時間が取れないという状況が見受けられます。しかし、単に課題を解決するのではなく、事業全体の改善を目指し、情報公開や信頼獲得、認知拡大、ブランディングへとつながる流れを作ることが求められています。 分析の仕組みは? そのため、まずは言語化や情報整理、データ収集と集約を丁寧に行い、その上で効果的な分析を実施する仕組みを確立する必要があります。私のミッションは、組織内の情報を安全に集約・整理し、課題や仮説を明確にした上で、比較対象となる市場の情報と合わせた総合的な分析を行い、意思決定のために適切な報告体制を整えることです。

データ・アナリティクス入門

数字と仮説で描く成長ストーリー

実践と検証はどう感じた? ライブ授業では、これまで学んできた内容の復習と実践演習ができた点がとても良かったです。データ分析においては、単純に数字を眺めるのではなく、比較を用いてしっかりと検証し、問題解決のプロセスに沿って取り組むことの大切さを実感しました。また、仮説を立ててからデータ収集を行い、やみくもな分析ではなく、数字の根拠に基づいたストーリーを構築する重要性を改めて認識しました。 施策はどう整理する? 今年度のマーケティング施策の振り返りにおいては、まず仮説をしっかりと立て、その後に問題解決のプロセスに沿って必要なデータを収集し、分析を進めています。さらに、来年度の施策を検討する際も、予め仮説を整え、後でデータ分析がしやすい状態で施策を実施する計画です。 仮説と比較で何が判明? 現在、各メンバーに仮説の策定を依頼しており、分析に必要なデータを収集する段階へと進んでいます。集めたデータを比較することで、成果が出た施策の要因や、あまり効果が現れなかった理由について、具体的な考察を進めていく予定です。

データ・アナリティクス入門

データ分析でチーム力: 組織全体を強化する方法

仮説検証の重要性とは? 目的に基づいて仮説を立て、データを収集し、その仮説を検証するサイクル(プロセス)に視点とアプローチを加え、データを読み解くこと。その際、代表値を用いる場合、判断方法には多くの選択肢があり、散らばりも含め、目的やデータ自体に合わせて使い分けることが重要です。また、平均は外れ値に弱いことを忘れず、必要な対処を行うことが大切です。 成績把握のポイントは? 日次や月次ごとの担当者間の成績や能力を把握・分析する際には、課内メンバー間の横比較や個人の推移を確認します。その際、外れ値に注意しながら平均値を用いるのは有効です。これにより、適切な組織の人材配置や各担当者の対応許容量の検証・分析が可能となります。 組織全体の課題解決方法は? 担当者間の成績を日次や月次ごとに分析することで、横比較や個人の進捗を把握し、組織全体の課題解決の促進に向けて適切な手を打つタイミングや個人の対応許容量をデータで分析します。適切に個々の許容量を管理することで、弱点の強化策や適材適所の人材配置の判断材料として活用します。

マーケティング入門

多角的学びで経営に挑戦

提案はどう説得する? マーケティングプランを加えた提案は、納得感を高めると実感しています。さらに、ファイナンスやアカウンティングなどで全体の状況を網羅することで、意思決定者の立場からの提案が可能になると感じました。 データは十分かな? マーケティングは顧客重視のため、定量化が難しい面があります。そのため、データの収集と分析力を向上させる経験を積む機会を大切にしていきたいと思います。 業務提案はどう見る? 新規業務提案にもこの考えを活かし、将来的な起業も視野に入れた上で、短期と長期の仕組み作りを重視します。大手の事例だけでなく、中小企業の成功例や失敗例にも学ぶために、書籍や動画サービスを通じて継続的に情報を取り入れる習慣を続けていきます。 書籍の読み方は? また、購入した書籍は全て読むのではなく、目次やダイジェストを参考にして本質を見極め、必要な部分を深く読み込むように工夫します。グロービス終了後も、時間を有効に活用して学習を継続し、部署内でのアウトプットの機会を通じて知識の定着を目指します。

データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

「データ × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right