クリティカルシンキング入門

日常業務に革命を起こす三つの秘訣

思考の偏りをどう防ぐか? 人間は無意識のうちに思考に制約や偏りが生じるものであり、そのためには意識して偏りを起こさない思考方法が必要だと演習を通じて理解しました。テクニックとしてロジックツリーなども紹介されましたが、何のために使うのかという目的意識が大切であると学びました。講義内容もその後の学びを活用するためのイメージが重要だと感じました。 実践での活用ポイントは? より実践で活用するために必要なのは「頭の使い方を知る」「他者とのディスカッション」「反復トレーニング」の三つがポイントです。客観的な思考をするためには、例えば何か物事に着手する際に5Wを意識して、「なぜ」「何」「どうやって」などを考え、問題の焦点を把握することが効果的だと知りました。 新規業務フローの効率化は? 新規業務のフロー構築においては、業務移管を受けて新規業務として確認・管理する機会が多いため、移管時にヒアリングした既存フローに縛られずに、より効率化・高品質化を実現するためのきっかけにします。 現状業務の改善策は? 既存業務の改善については、現状のルーティン業務においてもクリティカルシンキングを用いることで、今の方法が最適なのかを問い続けることにより、更なる閃きや改善策が生まれると感じます。 クリティカルシンキングを意識するには? 業務引継ぎやミーティングの場においては、他者とのディスカッションの場が自分の思考の偏りと同時に他者の思考の偏りも意識する機会となり、よりクリティカルシンキングを意識するきっかけになると感じます。 日々の業務での偏り解消法は? 以前から直感的に行動を取ってしまうことや、自身の閃きや考えが経験上最善策だという認識が無意識に働いていましたが、今後は一つ一つの業務や行動の前にワンクッションを置き、自らの無意識な偏りを炙り出すルーティンを作り、実践していきます。知識として理解しても行動に反映させることは非常に難易度が高いため、自らの行動の起点になるような癖付けをしていきます。 ディスカッション前の準備の重要性 さらに、他者とのディスカッション前には、議題に基づいて自身の考えを書き出し、その内容に対して5Wで問いかける時間を作るようにします。

リーダーシップ・キャリアビジョン入門

社用車管理のエンパワメント成功術

エンパワメントとは何か? エンパワメントとは、メンバーが自律的に業務を遂行できるように促すリーダーシップの一つです。目標を設定して、その達成方法をメンバーの自主性に任せつつ、効果的な支援を行います。ただし、ミスが許されない仕事や納期が極端に短い仕事には向かない手法です。リーダーがメンバーをよく理解し、モチベーションやスキル、喜びを感じる要因を見極めることも重要です。人材育成という側面も忘れずに考慮する必要があります。 目標設定はなぜ重要? リーダーシップの実践における第2ステップは目標設定です。目標設定では、メンバーをそのプロセスに参加させることが重要で、問いかけを通じてメンバーの問題意識や関心を引き出し、発言を促すことでコミットメントを得ます。また、目標は具体的で定量的であるべきです。メンバーが優先順位をつけて行動しやすいような、測定可能な目標が望ましいです。その際、目標に意義を持たせることで、メンバーの使命感を引き出し、挑戦感を与えることも大切です。これはメンバーに少し高めの目標を与えることで実現します。 成果が出ない時の対処法は? しかし、目標設定をしてもメンバーがやる気を出さない場合は、それが理解不足なのか、実行不能なのか、意欲の欠如なのかを見極めて、適切な支援を行う必要があります。 総務業務に目標設定をどう活用する? 私の業務に関して言えば、総務業務における目標設定を活用できると感じています。今回は、社用車管理業務に注目します。総務の業務は組織方針において抽象的になることが多く、(例:従業員が働きやすい職場環境の改善)そのため、メンバーが業務を日常の一環と捉えてしまい、課題の改善に取り組む意欲を持ちにくいと感じています。 具体的に、25年度の社用車管理業務の目標設定を実施しようと考えています。関係するメンバーを集め、問題意識や関心点をブレインストーミングで出し合い、それを整理します。小さな問題やすぐ解決できる事案は日常業務として処理し、大きな解決策が必要なものや即座に解決策が出ないものを課題として取り上げ、目標設定を行います。目的の意義、定量的かつ具体的な内容、そして挑戦の要素を各メンバーに伝え、エンパワメントを活用します。

データ・アナリティクス入門

プロセス分解で新発見!

プロセス分解で問題確認? 今回学んだ内容は、まず問題の原因を明らかにするために「プロセスに分解する」アプローチが有効であるという点です。複雑な現象を一連のステップに分けることで、どの段階で問題が発生しているのかを明確に把握することができます。 複数案提示で評価は? また、解決策の検討では、最初から一つの案に絞るのではなく、複数の選択肢を洗い出し、それぞれの根拠を整理して比較することが重要だと学びました。感覚ではなく客観的な理由に基づいて評価することで、納得性の高い意思決定が可能になります。 分析の4ステップとは? さらに、問題解決のフレームワークとして「What(何が問題か)」「Where(どこで起きているか)」「Why(なぜ起きているか)」「How(どう解決するか)」の4ステップを学習しました。この順序で考えることで、思考が整理され、問題に対して論理的にアプローチしやすくなります。 A/Bテストで検証は? また、A/Bテストの手法にも触れ、数値データに基づいて施策の効果を比較することで、主観に左右されない客観的な判断ができることも学びました。 業務改善はどこから? 実際の業務では、日々発生するトラブルや非効率なフローを「なんとなく不便」と感じるだけではなく、プロセスに分解して整理することで、どの部分に改善の余地があるのかを論理的に捉えることが可能になります。また、解決策を検討する際には、複数案を提示し、それぞれのメリット・デメリットを整理することで、チーム内での説得力や意思決定の自信にもつながります。 課題整理の習慣は? 今後は、まず業務上の課題をプロセスに分解して整理する習慣を身につけ、解決策を考えるときには最低でも2〜3案を提示し、それぞれの根拠を明確にすることを心がけます。また、「What → Where → Why → How」という順序を意識し、問題解決の思考を言語化することで、業務改善の効果測定もしっかりと行いたいと考えています。 提案力向上はどうする? こうした取り組みを通して、業務遂行力だけでなく、周囲とのコミュニケーションや提案力も向上させていきたいと思います。

クリティカルシンキング入門

多角的思考で未来を拓く

思考の偏りはなぜ? 人の思考には偏りがあり、自由に発想できる状況下でも無意識に制約を設けてしまうことが多いと感じています。クリティカル・シンキングは、物事を適切な方法で、適切なレベルまで考える思考法であり、コミュニケーションや問題解決の基盤となると実感しています。 視点の整理って? 例えば、物事を見る際には「視点」「視座」「視野」という3つの切り口を用い、MECE(漏れなくダブりなく)に整理することで、思考の偏りを防ぎ、全体像を的確に捉えることが可能です。日常の問題をこうした方法で整理すれば、論点の見落としや前提の違いに気づくことができ、他者と共有しやすい形にまとめられます。 業務改善の視点は? また、業務フローの見直しの場面では、「現状に問題はない」という意見があっても、その背景や前提条件を丁寧に掘り下げることで、より効率的で本質的な改善策にたどり着けると感じています。自身の考えを伝える際にも、根拠や構造を意識して説明することで、伝わりやすさが格段に向上すると思います。 育成の多角的視点は? チームメンバーの育成においても、単に答えを示すのではなく、問いかけや多角的な視点を提供することで、メンバー自身が主体的に考えを深められるよう努めたいと考えています。物事を鵜呑みにせず、構造的かつ多面的に捉える力を身につけることで、納得感のある判断や建設的なフィードバックが可能になるでしょう。 要素分解の大切さは? 具体的には、思考を要素分解して整理する力をさらに強化する必要があると実感しています。自分が把握している範囲で要素を洗い出すことは得意ですが、偏りや盲点があるため、より幅広い観点からの検証が求められると感じています。そこで、分解する際の観点や情報の調べ方を習得することで、日々の実践力を向上させられると考えています。 生成AI活用の効果は? 直近の取り組みとしては、生成AIを活用して要素の抜け漏れがないかをチェックする運用を取り入れる予定です。業務設計の初期段階では、まず自分が洗い出した要素をAIに入力し、出てきた情報を元に再検討することで、最終的に関係者に納得してもらえる形に整理していきたいと考えています。

データ・アナリティクス入門

視点が変わるデータ再発見のヒント

代表値は何を示す? データ分析においては、代表値や標準偏差といった基本指標を正しく理解し活用することが大変重要です。代表値には単純平均、加重平均、幾何平均、中央値などがあり、分析の目的に合わせた使い分けによって、より正確に傾向を読み取ることが可能となります。なお、実際の業務では最頻値を確認する場面もあるため、必要に応じて取り入れることが望ましいです。 集約手法の選び方は? また、データの集約方法にはさまざまな手法が存在し、誤った方法を用いると解釈や意思決定にズレが生じる可能性があります。そのため、常に目的に合ったアプローチを意識し、適切な手法を選択することが重要です。さらに、データのビジュアル化では、表現方法を工夫することで数字だけでは気づきにくい傾向を視覚的に捉えることができるため、状況に応じた最適な手法の選択が求められます。 ダッシュボードはどう使う? 施策の効果検証や日々の数値を確認するためのダッシュボードの作成・管理は、私の業務において大変重要な役割を担っています。これまでも代表値の使い分けやデータのビジュアル化について意識してきましたが、今回の学習を通じて基礎部分を再確認することができ、より適切な方法を用いる必要性を実感しました。特に、ダッシュボードは自分だけでなくチームのメンバーも活用するため、見せ方や解釈しやすさに細心の注意を払っています。 新たな平均法は? これまであまり使用してこなかった加重平均や幾何平均についても、現在扱っているデータに適用できる場面を意識的に探していきたいと考えています。既存のデータを例に、新たな視点での分析に取り組むことで、今まで見逃していた傾向やパターンを見出せる可能性があるため、さまざまな集約方法を試し、状況に合わせた最適な手法を選択できるよう努力したいと思います。 グラフ表現の意味は? ビジュアル化に関しては、単にグラフを選ぶのではなく、なぜその形式が適切なのかという明確な意図を持って活用することが大切です。さらに、同じ種類のグラフであっても、表示する項目数や内容によって可読性や伝達力が大きく変化するため、見せ方の工夫や調整にも十分な注意を払っています。

データ・アナリティクス入門

解決策を見つける真のプロセス学習

問題解決への焦りはなぜ? 何か問題が発生すると、「すぐにどうすればよいか?」と考えてしまうことは、私自身にも心当たりがあります。なぜそのような思考になるのかを考えると、問題を早く解決したいという焦りや、楽に解決したいという心理が影響しているのだと思います。しかし、こうしたアプローチは直感に頼りすぎるため、必ずしも良い結果を生むわけではなく、改めてこのことを認識しました。 まずは、問題を正確に定義することが重要です。そして、「その問題はどこで発生しているのか?」「なぜ起こっているのか?」「どのようにすれば解決できるのか?」というステップを踏むことで、直感的な解決策よりも、より高い確率で適切な解決に繋がることを理解しました。 過去の対策とその反省 過去に、不具合が頻繁に発生するシステムがあり、そのとき私は「すぐにどうすればよいか?」を考え、対策を講じていました。具体的には、エンジニアの責任感を高めるために定期的に1on1を実施し、細部まで仕様を決めて実装の指示を出す、さらに実装とテストを別の担当が行うようにしていました。しかし、それらの対策を実施しても、不具合が改善されることはありませんでした。根本的な原因を特定しないまま対策を講じていたことが理由だと考えます。 問題の本質を捉え、「その問題はどこで発生しているのか?」「なぜ起こっているのか?」「どのようにすれば解決できるのか?」をしっかり分析することが重要です。そうすれば適切な解決策が明らかになり、問題が減らせるかもしれません。 効果的な解決策を学ぶプロセス 今回、より高い確率で適切な解決策を見つける方法を学ぶことができました。学んだステップを実施する際に、漏れや重複があると効果的な対応ができなくなることも認識しました。しかし、「問題を早く解決したい」という焦る気持ちや、「できるだけ楽に解決したい」という心理が強く働くと、再び「すぐにどうすればよいか?」と考えがちになるかもしれません。 最初は、課題解決に時間がかかることもあるかもしれませんが、まずは今回学んだ方法を実践し、継続することで問題解決の精度とスピードを高めていきたいと思います。

戦略思考入門

戦略的思考で未来を切り開く

戦略的思考とは何か? 戦略的思考を意識するために、これまでに仕事を通じて戦略的だと感じた上司や同僚の姿を思い浮かべることにしました。彼らに共通しているのは、目指すべき姿を明確に言語化し、それをメンバーと共有している点です。さらに、目的達成に必要な行動を具体化し、関係者を巻き込みながら必要な影響を整理して交渉の材料としています。このような方々の姿勢を学び、具体的な形で自分の中に落とし込んで学習を進めたいと考えています。 経験をどう活かすか? 戦略的思考を学ぶ目的は、自分の仕事に活かすことです。そのために、自分の経験と結びつけることでより深い理解を目指しています。 今年度の組織課題は? 現在の組織に対しては、本質的な課題と目標を明確にした上で進むべき道を考えていきたいと考えます。今年度は一部の組織機能の統合を試みたものの、効果が十分かどうか、あるいは不足している部分を分析しきれていない状態です。また、自社の強みと業界内での差別化ポイントがまだ不明確であり、目指すポジションをしっかりと定める必要があります。次年度の方針を2026年4月を視野に入れながら決定し、1年間の施策を具体的に立案し進めていきたいです。 プロジェクトの見直しが必要? 社内で関わっているプロジェクトに関しては、現在の活動が場当たり的であると感じています。変化を促したい対象を絞り込み、ゴールから逆算して施策の内容やスケジュールを考える必要があります。 なぜゴール設定が重要か? 自分にとって特に意識すべきことは、「先を見据えゴールを明確にする」ことです。具体的には、次年度の方針を策定する際、2025年度末に達成したいゴールを設定し、それに向けた方針を検討します。そのためには、組織改革や業務整理が重要ですが、これには時間と労力がかかります。優先順位付けとスケジュールを重視し、やるべきこととやらないことを区別します。そして、アクションプランを立て、定期的に振り返りを行いながら進めることで、ブレや滞りがないか確認することが大切です。その過程で、戦略的思考で学んだことが反映できているかを自身で確認し、実践に繋げていきます。

データ・アナリティクス入門

ナノ単科で挑む仮説の実践

仮説って何? ビジネス現場での仮説とは、ある論点に対する暫定的な答えを示すものであり、大きく「結論の仮説」と「問題解決の仮説」に分けられます。状況に応じて、過去・現在・未来それぞれで仮説の内容が変わる点も特徴です。 解決と結論は? 問題解決の仮説は、具体的な課題に対して原因を究明するためのものです。一方、結論の仮説は、たとえば新規事業においてある論点への暫定的な答えを示す際に用いられます。 4ステップの流れは? 問題解決のプロセスは、次の4つのステップで進めます。まず、Whatとして問題が何であるか、またその規模を把握します。次にWhere、すなわち問題の所在を特定します。その後Whyとして、なぜその問題が発生したのか原因を追及し、最後にHow、どのように対策すべきかを検討します。 仮説はどう練る? 仮説を立てる際には、決め打ちせず複数の仮説を考えることが重要です。異なる観点や組み合わせから仮説を立てることで、情報の扱いに網羅性が生まれ、柔軟な解決策を導く助けとなります。 現状把握は大事? 施策の検討では、すぐに解決策に飛びつかず、まずは現状を十分に把握することが求められます。たとえば、見込み顧客を効率的に集めたい場合、SEO対策やウェビナーをすぐに試みるのではなく、なぜ見込み顧客が増えないのか、実際に問い合わせをしてくれる顧客の層やニーズを確認した上で仮説を立て、ABテストなどで検証するプロセスが大切です。 営業仮説の効果は? また、営業面においても、現状の状況・業務上の問題・その影響、そして解決された場合のメリットを問い直すことで、仮説の思考は効果を発揮します。これは、営業メソッドであるSPINの各質問(状況質問、問題質問、示唆質問、解決質問)とも通じる考え方です。 顧客行動はどう見る? さらに、顧客の行動分析の際は、カスタマージャーニーマップを作成するにあたって、こちらの期待する行動ではなく、顧客のインタビューを通じた実際の行動パターンをデータ化・可視化し、どのステップで課題が生じているかを明確にすることが重要です。

デザイン思考入門

戻る勇気で生み出す革新の軌跡

テストで何を見極める? デザイン思考の最終ステップである「テスト」は、共感、課題定義、発想、試作というこれまでの流れを総仕上げしながら、各プロセスに戻るための道筋を示す重要な工程です。この段階では、試作に盛り込んだアイデアの充実度、課題定義の妥当性、そして初期の共感がどこまで実現されているかを議論します。状況に応じて、必要な工程に立ち返ることができるため、非線形的なアプローチの入り口とも言えます。 なぜ戻るが大切? 一般には「戻る」という作業は嫌われがちですが、デザイン思考を活用して何かを実現するためには、このプロセスが非常に大切だと感じています。初めからプロジェクトメンバー全員がその重要性を共有していれば、スムーズに進められるのではないかと思います。 システム開発の難しさは? 私の仕事であるシステム開発では、各ステップが線形に進む必要があるという制約があり、各工程ごとに承認や同意が求められます。一見するとデザイン思考とかけ離れているようにも思えますが、今回の学びを通じて、デザイン思考は全体を俯瞰するだけでなく、一部分の課題に対するアプローチとしても有効であると実感しました。特に要件定義の期間にデザイン思考を集中的に取り入れることで、その後の設計やシステムテストの工程に悪影響を及ぼすことなく、より効果的な成果に結びつけることができると考えます。 新規案件でどう活かす? 現在手掛けている新規案件では、顧客側からの提案依頼がまだ明確ではないため、この段階でデザイン思考を活用できる可能性を感じています。顧客を巻き込み、共感のポイントを洗い出し、適切な課題定義に結びつけることができれば、その後に弊社側で発案する解決策との連携も取りやすくなり、システム完成後の効果がより実感できるはずです。一方で、試作段階については、単なる操作画面のスライドショーでは伝わりにくいという過去の経験もあり、工夫が求められると感じています。また、システム開発においては試作にかかるコストも課題となるため、これまでの経験を活かしながら、デザイン思考をうまく取り入れてより良い課題解決へ繋げていきたいと思います。

データ・アナリティクス入門

納得するだけではなく、行動に移そう!

ストーリーの重要性は? 今回の講義で最も印象に残ったのは、「やみくもに分析しない。ストーリーが大事」という点です。今まで意識していなかったwhereで傾向を掴み、どこまで掘り下げられるかという部分に気付かされました。whereを浅くしすぎるとwhyがまったく意味をなさなくなるため、問題がどこにあるのかという点にもしっかり目を向けたいと思います。 「わかる」と「できる」の違い 全体の講義を通じて感じたことは、講義や動画の内容に対して納得できる部分が多々あったということです。毎回わかっているつもりでしたが、実際に演習をしたりグループワークで意見を交換したりすると、うまくいかない場面が多いことに気付きました。「わかる」と「できる」は全然違うということを改めて実感しました。 賃金制度見直しのポイント 来期に向けた賃金制度の見直しに際して、以下のポイントを意識して分析したいと思います。まずは①自社の賃金制度のどこに問題があるのか、次に②なぜそのような問題が発生しているのか、最後に③どうすれば理想の姿に近づけるのかです。これらを講座で学んだことを活かし、具体的な賃金制度案を示していきたいです。 仮説からのデータ集め方とは? また、自身および一緒に働くメンバーに対しては「仮説➡データ集め➡検証」という明確な流れを意識することが少ないため、今回の学びを共有し、効率的・効果的に課題解決のステップを踏めるチームにしていきたいと考えています。 学びを日常に活かすには? チームで共有するためには、まず自分がしっかりと理解し、使えるようになることが大切です。学んだことがまだ全然身についていないため、まずは学んだ内容をもう一度振り返り、ポイントを整理し、日常業務や生活の中で1日1回は必ず実践することを意識したいです。特に「仮説を網羅的に立てること」、「何と何を比較すれば得たい結果が得られるのか、比較対象を設定すること」、「条件を揃えて比較すること」といった点について意識しながら日々考える習慣をつけたいです。

データ・アナリティクス入門

仮説思考で成果を引き出す方法を学んで

仮説思考をどう浸透させる? 今回の学びで、仮説とは何か、その明確な答えと種類について理解を深めることができました。これにより、今後同僚に仮説思考を浸透させる際に非常に役立つ知見を得られました。 データ収集の重要性とは? 特に印象に残ったのは、仮説を検証する際には都合の良いデータだけでなく、そうでないデータも集めることの重要性です。これは当たり前のことですが、自分の仮説を成立させるために都合の良いデータを集めがちであることに気づかされました。また、仮説を用いて社内外のステークホルダーを説得するには、多くの状況証拠を集めて分析することの重要性を再認識しました。 行動を深める仮説活用法 私は仮説をもって行動することの重要性を感じています。失敗しても「なぜ失敗したのか」を検証しやすくなるためです。今週の学習では、仮説を正しく用いることで説得力が増し、行動のスピードと精度も上がるという点に感銘を受けました。この学びを次週以降の学習でさらに深めたいと思っています。 成功体験に頼らないためには? 仮説の重要性やその価値を同僚に伝え、仮説思考を普及させることで、事業部の政策決定や担当者の行動が効率化されることを期待しています。過去の成功体験に依存する傾向がある事業部では、なぜ成功したのか、そして今も通用するのかを検証せずに同じ施策を繰り返しがちです。これは「問題解決の仮説」ができていない証と考えます。仮説思考の重要性を学んだので、これまでの取り組みを再考したいと思っています。 キャンペーン効果の再評価を 具体的には、事業部が定期的に行うキャンペーンやインセンティブについて、その効果を費用面だけでなく当時の外部環境も踏まえて検証しようと思います。これまでは、仲の良い同僚や上司と問題提起を行い理解を得られていましたが、それを全体に普及させることはできていませんでした。次週以降の具体的な方法を適用するための準備として、多様なデータを集めることから始めようと思います。その際、都合の悪いデータも取得することを忘れずに行いたいです。この週の気づきを早速実務に反映していきたいと思います。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

「なぜ × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right