データ・アナリティクス入門

問いで切り拓く学びの現場

なぜ仮説が重要? 仮説思考について学んだ内容は、まず知識の幅を広げるために「なぜ」を5回繰り返す問いかけや、別の観点からの検証、時系列に沿った動的な理解、将来を予測する思考実験、類似や反対する事象との比較といった手法が有効であるという点です。 どんな仮説を組み立てる? また、ラフな仮説を構築する際には、常識にとらわれず新しい情報を組み合わせ、アイデアの発想を止めずに続けることが重要だと感じました。 検証はどう進む? 検証ステップでは、必要な検証の程度を見極め、枠組みを設定して情報を集め、分析するプロセスが重要です。仮説を肉付けし、再構築することで、より具体的に検証を繰り返していく方法が役立つと学びました。 リーダーは何を実践? リーダーの役割については、情熱をもって率先して行動することが求められ、積極的に発言したり、質問を通じてメンバーを育成したりすることが大切です。チーム内で役割を分担し、各自が切磋琢磨しながら仮説検証に取り組む環境の重要性も強調されました。 マーケティングはどう考える? マーケティングに関しては、セリングが製品ありきで成果を追求するのに対し、市場や顧客ニーズに焦点を当てるマーケティングの考え方が印象深かったです。まず外部環境と内部環境を分析して市場の機会を探り、性質やニーズによるセグメンテーションを行い、ターゲティングを明確にした上で、顧客の頭の中に価値ある製品イメージを構築するポジショニングが鍵となると理解しました。 原因は何だろう? 原因を探る際は、プロセスに分解し、複数の選択肢を洗い出して根拠を持って絞り込む方法が有効です。また、A/Bテストのように複数の案を試しながら効果を比較検証するシンプルな方法も、低コストで実施しやすいと感じました。 どんな学びを得た? 全体を通して、売り上げ減少の原因や新規プロジェクトの構想に対して実務で活用できる仮説思考の手法に触れることができました。特に、問いを繰り返すことで思考を深める方法や、リーダーとしての役割がいかに重要であるかを再確認できた点が印象に残りました。マーケティングの基本概念に基づいて、顧客満足度を重視した商品作りやサービスの開発プロセスについて、実際の経験をお持ちの方の意見もぜひお聞きしたいと思います。

リーダーシップ・キャリアビジョン入門

後輩育成の秘訣と学びのコツ

新メンバー指導のポイントは? 学びとなった点は以下の3つです。 まず、新メンバーの指導において、以下の3点を必ず押さえることが重要だと感じました。1つ目は、初めに「何をどこまで任せるか」を明確に伝えることで、相手との共通理解を得ることです。2つ目は、その仕事の意義や目的を伝え、「なぜやるのか」を理解させることです。これにより、相手が自律的に動きやすくなります。3つ目は、相手の経験や能力を確認し、それに応じたフォロー体制を整えることです。 学び方のコツとは? 次に、学び方のコツとして3つあります。1つ目は言語化で、考えを言葉にし、漠然とした考えで終わらせないようにすることです。2つ目は教訓化で、各ケースを客観的に分析し、普遍的な教訓を引き出すことです。3つ目は自分化で、引き出した教訓を自分の状況に照らし合わせ、自分の課題や弱みを改善するために考えることです。 リーダーシップの育み方は? また、リーダーシップの三要素について学びました。能力と意識を掛け合わせることで行動が生まれるというもので、私の場合は能力に偏っていたため、明るく前向きでオープンな意識を、業務を通じて日々心掛けていきたいと思います。 ジュニアメンバーへの効果的な指導策 チーム内のジュニアメンバーに業務を依頼する際には、この学びを活かし、特に相手の経験や能力の事前把握を重視したいと思います。以前はフォロー体制が不十分で、相手の信頼を得られていないこともあったため、改善する所存です。リーダーシップに関しては、「明るく機嫌よく前向きでオープン」を意識し、信頼されるリーダーを目指したいです。現在は意識にムラがあるため、人との関わりの中で積極的に意識していきたいです。 指導プランの具体例は? ジュニアメンバーへの指導プランとして、月に一度のロープレを実施し、経験や能力を丁寧に聞き取ることで、相手の視点に合わせたフォロー体制を築き、信頼を得ることを目指します。一方、意識面の行動プランとしては、「明るく前向き、機嫌よくオープン」を実践するために、常に笑顔を忘れず、終礼時に適度に自分の情報を開示し、ジュニアメンバーとの関係性を深めていきます。また、週の定例ミーティングでは、ジュニアに考えさせるような意見や指摘を心掛け、彼らの成長をサポートしたいと考えています。

デザイン思考入門

発想転換で掴む次世代解決策

どうして視点変更? ライブ講座のプロトタイプ発表では、視点を変えることの大切さと、課題解決において意外な効果があることを学びました。特に登山用バックパックをテーマとして、課題の捉え方を変えると解決策のアプローチも異なり、全く新しい応用例につながることが印象的でした。また、参加者全員が否定せずに各自のアイディアを前向きに受け止め、議論が活発に進んだ点が良かったと感じます。初期段階では改善の余地があるアイディアも多いですが、そうした点に踏み込んで議論する雰囲気作りが重要だと実感しました。 効果はどこから来る? 今回の体験は、単に商品開発に留まらず、他の業務にも応用可能な思考の枠を広げるワークショップとして十分な効果があると感じました。自分の思考の癖に気づく機会にもなり、技術的な面は後回しにしてまずは豊かな発想を引き出すステップが新たなアイディア創出に必要であると学びました。 なぜ議論は難しい? また、アイディアを出す際にはスキャンパー法を試してみたいと思います。今回のシェアや議論はスムーズに進みましたが、実際の職場では以下のような理由からディスカッションが難しい場合もあると感じました。 ・ポジティブな議論に慣れていないため、否定的な雰囲気になりがち ・結論を急ぐ傾向があり、十分な議論が行われない ・現状維持を好むため、新たなアイディアが無視される ・いかにアイディアを出しても、従来通りの結論に戻ってしまうと感じる ・突飛なアイディアを受け入れる土壌が整っていない ・質問を避ける傾向にある こうした状況に対しては、1~3枚程度のスライドにアイディアをビジュアル化し持ち寄ることで、言葉だけでは伝わりにくい発想を明確にし、議論を促進できると感じました。実際、業務においてプロトタイピングの機会は少ないものの、AIやクラウドサービスを利用すれば自分の考えを手軽にビジュアライズできるため、非常に役立つと実感しました。 どう未来を描く? 今後は、対象顧客の課題をしっかり理解し、その中から解決すべき点を明確にした上で、アイディアの出し方やビジュアル化、フィードバックの仕組みを業務に取り入れるステップを意識していきたいと思います。一旦アイディアを数多く出し、形にして共有することで、より実践的な問題解決につなげていく方針です。

クリティカルシンキング入門

数字を視覚化して成果を上げる方法

数字を分解し要素を見極めるには? 数字を分解し要素に分けることで、どこに差分があるのかを明確にすることが重要です。数字そのものではなく、割合や順番でとらえることで、差異が見えやすくなります。そのためには、割合や順番をグラフなどで視覚化すると効果的です。 多様な観点からの切り分け方は? 分解の切り口には様々な方法があります。多様な観点から切り分けることで、特徴や差分を特定していきます。特徴がある要素を見つけた場合、他に差異がないかを引き続き分解して検証します。本当にそう言い切れるかという視点で深掘りすることが必要です。 もし分解して特徴が見つからなくても、それ自体が間違いではなく、差分がないことがわかるという成果となります。切り分け方に固執せず、実際に手を動かしてみることが大切です。MECEに基づく切り分けには、層別、変数、プロセスがあります。MECEを適用する際には、最初に「全体」とは何かを定義し、全体の範囲を決めることが肝心です。 分解が市場調査にどう役立つ? これらの方法は、市場調査や競合他社の分析に役立ちます。例えば、同じ商品やサービスでも各社がどのように成り立たせているかを要素に分解し、差異性を探ることで、仮説を立てることにもつながります。また、業務システムの改善案件でも、どのプロセスにどれくらいの時間や人手がかかっているのかを分解することで、改善策を見つける手助けとなります。 プレゼン資料をより説得力のあるものにするには? データを加工する際には、クライアントへの資料をより伝わりやすく、説得力のあるものにすることが求められます。数字そのものではなく、割合や順位といった形で意味を視覚化し、要素ごとに差異性や特徴を明らかにすることで、しっかりと説得力のあるプレゼンが可能となります。 全体の定義はなぜ重要? まずは全体の定義から始め、チームで共有することが重要です。全体の定義ができたら、次は分解の切り口について皆でアイデアを出し合います。それを元に切り口ごとで差異や特徴を分析し、必要があれば更に深掘りします。特徴や差異が出ない場合でも、その事実を記録として残すことが重要です。数字はそのまま使わず、全体の中の位置づけやインパクトのある要素を際立たせるなど、ビジュアル化して関係者の共通認識とすることです。

アカウンティング入門

数字が築く信頼と説明の力

会計は何を伝える? Week1の学びの中で、最も印象に残ったのは、アカウンティングが単に数字を扱うだけでなく、説明責任を果たすための手段であるという点でした。財務報告は、顧客や投資家にビジネスの実態や判断理由を伝え、信頼を得るプロセスであると実感しました。数字の良し悪しを評価するだけではなく、その背景や意味を詳しく説明することが信頼構築につながると気づかされました。 数字の背景は? たとえば、売上増加が一時的なキャンペーンによるものか、リピート顧客の増加によるものかで意味合いは大きく異なります。こうした背景を説明することが、単に数字で語る以上に重要だと感じました。 業務効率化の目的は? 現在進行中の経理業務効率化プロジェクトでは、なぜその処理が必要なのかを明確にするため、処理フローを図解し、関係者ごとの視点で要点を整理した説明資料を作成しています。今後は、売上推移のグラフに要因分析のコメントを加えたり、プロセス毎の処理件数を可視化したりすることで、財務データとその意味をまとめ、現場の改善活動に活かしていく予定です。 説明責任の価値は? この考え方は、経理業務の効率化プロジェクトや月次報告資料の作成、説明の場面で特に役立つと感じています。社内の営業部門やマネジメント層に対して、業務成果や処理の背景をしっかりと説明する際にも、アカウンティングの「説明責任」の視点を活用したいと思います。 資金繰りの背景は? また、「なぜこのフローが必要か」や「なぜこの数値になったか」を、単なる報告に留まらず、損益計算書や貸借対照表の視点と結びつけて説明することで、たとえば特定の対応がどのように資金繰りに影響を与えたかといった具体的な効果を伝えられるようになると考えています。 処理フローの必要性は? そのため、まずは処理フローと財務数値との関連性を整理し、簡単な図や表で関係者に分かりやすく共有することが重要です。さらに、毎月の報告書には、数値の背景にあるビジネスの動きを具体的にコメントとして添えることを心がけ、数字の「正しさ」だけでなく「意味や背景」を丁寧に説明する姿勢を継続していきたいと思います。 Week1は何感じた? Week1の内容に関しては、特に追加する事項はありません。

データ・アナリティクス入門

なぜ?が未来を変える学び

なぜ問題は起こる? まず、問題が発生した際にすぐ解決策(HOW)を考えるのではなく、「なぜこの問題が起きたのか(WHY)」に立ち返る姿勢が大切だと学びました。たとえば、ある教育機関のケースでは、一見複数の悪い数字が散見されたものの、詳しく分解すると根本原因が一つに絞れるという発見がありました。表面的な現象だけでは的確な対策が打てないため、まず原因の深掘りが必要だと痛感しました。 ロジックで整理? また、ロジックツリーやMECEといったフレームワークを活用することで、論点整理に漏れや重複がなくなり、複雑な課題もシンプルな要素に整理できる点が印象的でした。これにより、解決すべき具体的な課題が明確になり、自分がリソースを注ぐべき事柄に優先順位を付けやすくなります。 既存施策の強みは? さらに、課題を因数分解することで、単に解決すべき問題だけでなく、既存の施策から成果が出ている部分を見出すこともできると感じました。これは、改善活動のみならず、自分たちの強みを再確認する良い機会となります。加えて、自らの打ち手がどの部分にどのように影響を及ぼすかを理解することで、効果測定が容易になり、施策の評価や次のアクションの決定に大いに役立つと実感しました。 業務標準化の秘訣は? 来季、部署内で進める「各拠点の業務標準化」においては、まず運用の差異がなぜ生じるのかを徹底的に分析し、表面的な違いではなく根本的な要因(たとえばシステム設定やスタッフ教育、地域ごとの慣行など)を明確にすることがポイントです。さらに、標準化が進まない理由を大項目、中項目、小項目という階層構造で整理し、プロセス、人材、システム、ガバナンスといった視点から抜け漏れなく検討することで、優先的に取り組むべき課題が見える化されます。また、標準業務の順守率やエラー率など、具体的な効果指標を設定することで、改善のインパクトを把握しやすくなると考えています。 優先順位は何故? 実践の際は、課題の重要度や緊急度だけでなく、実現のしやすさという観点も加えて優先順位を決めることが不可欠です。現場で課題に取り組む際、皆さんはどのような基準やプロセスを用いているでしょうか。ぜひ、具体的な事例や経験をもとに意見を共有していただければと思います。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

データ・アナリティクス入門

仮説思考で未来を切り拓く

仮説思考はどう? 今週は、仮説思考の重要性と、仮説を立てる際の具体的なポイントについて学びました。仮説とは、まだ十分に明らかでない論点に対して一時的に答えを設定し、それを行動や検証の出発点とするものです。単なる思いつきではなく、論理的な根拠に基づいた取り組みが求められると実感しました。 複数の仮説は必要? 仮説を立てる際は、一つに絞るのではなく、複数の仮説を用意することが大切です。それぞれが漏れや重複なく、論点を網羅していることが求められます。また、データを収集する際には「誰に」どのように聞くかという視点を持ち、主観や偏りのない情報を得る工夫が必要だと感じました。 仮説の効果は何? 仮説思考の意義は、検証マインドの育成や、発言・提案の説得力の向上、問題に対する関心の深化と主体的な行動、判断や対応のスピードアップ、そして行動の精度向上にあります。これらは、実際の業務に直結する価値ある視点であり、感覚や経験だけに頼らない論理的な思考が、結果として仕事の質を高めると実感しました。 トラブルにどう対応? 特に、現場でトラブルや進捗の遅れが発生した場合には、「なぜこうなっているのか?」という問いかけから複数の仮説を立て、原因を洗い出すことが有効だと感じました。例えば、工程が遅れていると感じた際に「人員が不足しているのではないか」「機器の稼働率が低下しているのではないか」「必要な資材が届いていないのではないか」といった仮説を言語化し、関係者と共有することで問題解決に近づけると考えています。 安全面はどう考える? また、現場で安全面に関する小さなヒヤリハットが発生した場合にも、単なる報告に留めず、「なぜ起きたのか?」という問いを立て、複数の仮説に基づいて現状を確認し、改善策を具体的に考えることが重要です。定例の会議や社内報告においては、結論のみならず、その背景にある「こう考えた理由=仮説」のプロセスを伝えることで、より説得力のある報告や提案が可能になると思います。 どう改善していく? 今後は、現場で何らかの問題に直面した際に、まず論理的に仮説を立て、それをもとに検証し、改善していくという思考の流れを、日々の業務に積極的に取り入れていきたいと考えています。

クリティカルシンキング入門

日常業務に革命を起こす三つの秘訣

思考の偏りをどう防ぐか? 人間は無意識のうちに思考に制約や偏りが生じるものであり、そのためには意識して偏りを起こさない思考方法が必要だと演習を通じて理解しました。テクニックとしてロジックツリーなども紹介されましたが、何のために使うのかという目的意識が大切であると学びました。講義内容もその後の学びを活用するためのイメージが重要だと感じました。 実践での活用ポイントは? より実践で活用するために必要なのは「頭の使い方を知る」「他者とのディスカッション」「反復トレーニング」の三つがポイントです。客観的な思考をするためには、例えば何か物事に着手する際に5Wを意識して、「なぜ」「何」「どうやって」などを考え、問題の焦点を把握することが効果的だと知りました。 新規業務フローの効率化は? 新規業務のフロー構築においては、業務移管を受けて新規業務として確認・管理する機会が多いため、移管時にヒアリングした既存フローに縛られずに、より効率化・高品質化を実現するためのきっかけにします。 現状業務の改善策は? 既存業務の改善については、現状のルーティン業務においてもクリティカルシンキングを用いることで、今の方法が最適なのかを問い続けることにより、更なる閃きや改善策が生まれると感じます。 クリティカルシンキングを意識するには? 業務引継ぎやミーティングの場においては、他者とのディスカッションの場が自分の思考の偏りと同時に他者の思考の偏りも意識する機会となり、よりクリティカルシンキングを意識するきっかけになると感じます。 日々の業務での偏り解消法は? 以前から直感的に行動を取ってしまうことや、自身の閃きや考えが経験上最善策だという認識が無意識に働いていましたが、今後は一つ一つの業務や行動の前にワンクッションを置き、自らの無意識な偏りを炙り出すルーティンを作り、実践していきます。知識として理解しても行動に反映させることは非常に難易度が高いため、自らの行動の起点になるような癖付けをしていきます。 ディスカッション前の準備の重要性 さらに、他者とのディスカッション前には、議題に基づいて自身の考えを書き出し、その内容に対して5Wで問いかける時間を作るようにします。

リーダーシップ・キャリアビジョン入門

社用車管理のエンパワメント成功術

エンパワメントとは何か? エンパワメントとは、メンバーが自律的に業務を遂行できるように促すリーダーシップの一つです。目標を設定して、その達成方法をメンバーの自主性に任せつつ、効果的な支援を行います。ただし、ミスが許されない仕事や納期が極端に短い仕事には向かない手法です。リーダーがメンバーをよく理解し、モチベーションやスキル、喜びを感じる要因を見極めることも重要です。人材育成という側面も忘れずに考慮する必要があります。 目標設定はなぜ重要? リーダーシップの実践における第2ステップは目標設定です。目標設定では、メンバーをそのプロセスに参加させることが重要で、問いかけを通じてメンバーの問題意識や関心を引き出し、発言を促すことでコミットメントを得ます。また、目標は具体的で定量的であるべきです。メンバーが優先順位をつけて行動しやすいような、測定可能な目標が望ましいです。その際、目標に意義を持たせることで、メンバーの使命感を引き出し、挑戦感を与えることも大切です。これはメンバーに少し高めの目標を与えることで実現します。 成果が出ない時の対処法は? しかし、目標設定をしてもメンバーがやる気を出さない場合は、それが理解不足なのか、実行不能なのか、意欲の欠如なのかを見極めて、適切な支援を行う必要があります。 総務業務に目標設定をどう活用する? 私の業務に関して言えば、総務業務における目標設定を活用できると感じています。今回は、社用車管理業務に注目します。総務の業務は組織方針において抽象的になることが多く、(例:従業員が働きやすい職場環境の改善)そのため、メンバーが業務を日常の一環と捉えてしまい、課題の改善に取り組む意欲を持ちにくいと感じています。 具体的に、25年度の社用車管理業務の目標設定を実施しようと考えています。関係するメンバーを集め、問題意識や関心点をブレインストーミングで出し合い、それを整理します。小さな問題やすぐ解決できる事案は日常業務として処理し、大きな解決策が必要なものや即座に解決策が出ないものを課題として取り上げ、目標設定を行います。目的の意義、定量的かつ具体的な内容、そして挑戦の要素を各メンバーに伝え、エンパワメントを活用します。

クリティカルシンキング入門

多角的思考で未来を拓く

思考の偏りはなぜ? 人の思考には偏りがあり、自由に発想できる状況下でも無意識に制約を設けてしまうことが多いと感じています。クリティカル・シンキングは、物事を適切な方法で、適切なレベルまで考える思考法であり、コミュニケーションや問題解決の基盤となると実感しています。 視点の整理って? 例えば、物事を見る際には「視点」「視座」「視野」という3つの切り口を用い、MECE(漏れなくダブりなく)に整理することで、思考の偏りを防ぎ、全体像を的確に捉えることが可能です。日常の問題をこうした方法で整理すれば、論点の見落としや前提の違いに気づくことができ、他者と共有しやすい形にまとめられます。 業務改善の視点は? また、業務フローの見直しの場面では、「現状に問題はない」という意見があっても、その背景や前提条件を丁寧に掘り下げることで、より効率的で本質的な改善策にたどり着けると感じています。自身の考えを伝える際にも、根拠や構造を意識して説明することで、伝わりやすさが格段に向上すると思います。 育成の多角的視点は? チームメンバーの育成においても、単に答えを示すのではなく、問いかけや多角的な視点を提供することで、メンバー自身が主体的に考えを深められるよう努めたいと考えています。物事を鵜呑みにせず、構造的かつ多面的に捉える力を身につけることで、納得感のある判断や建設的なフィードバックが可能になるでしょう。 要素分解の大切さは? 具体的には、思考を要素分解して整理する力をさらに強化する必要があると実感しています。自分が把握している範囲で要素を洗い出すことは得意ですが、偏りや盲点があるため、より幅広い観点からの検証が求められると感じています。そこで、分解する際の観点や情報の調べ方を習得することで、日々の実践力を向上させられると考えています。 生成AI活用の効果は? 直近の取り組みとしては、生成AIを活用して要素の抜け漏れがないかをチェックする運用を取り入れる予定です。業務設計の初期段階では、まず自分が洗い出した要素をAIに入力し、出てきた情報を元に再検討することで、最終的に関係者に納得してもらえる形に整理していきたいと考えています。

データ・アナリティクス入門

プロセス分解で新発見!

プロセス分解で問題確認? 今回学んだ内容は、まず問題の原因を明らかにするために「プロセスに分解する」アプローチが有効であるという点です。複雑な現象を一連のステップに分けることで、どの段階で問題が発生しているのかを明確に把握することができます。 複数案提示で評価は? また、解決策の検討では、最初から一つの案に絞るのではなく、複数の選択肢を洗い出し、それぞれの根拠を整理して比較することが重要だと学びました。感覚ではなく客観的な理由に基づいて評価することで、納得性の高い意思決定が可能になります。 分析の4ステップとは? さらに、問題解決のフレームワークとして「What(何が問題か)」「Where(どこで起きているか)」「Why(なぜ起きているか)」「How(どう解決するか)」の4ステップを学習しました。この順序で考えることで、思考が整理され、問題に対して論理的にアプローチしやすくなります。 A/Bテストで検証は? また、A/Bテストの手法にも触れ、数値データに基づいて施策の効果を比較することで、主観に左右されない客観的な判断ができることも学びました。 業務改善はどこから? 実際の業務では、日々発生するトラブルや非効率なフローを「なんとなく不便」と感じるだけではなく、プロセスに分解して整理することで、どの部分に改善の余地があるのかを論理的に捉えることが可能になります。また、解決策を検討する際には、複数案を提示し、それぞれのメリット・デメリットを整理することで、チーム内での説得力や意思決定の自信にもつながります。 課題整理の習慣は? 今後は、まず業務上の課題をプロセスに分解して整理する習慣を身につけ、解決策を考えるときには最低でも2〜3案を提示し、それぞれの根拠を明確にすることを心がけます。また、「What → Where → Why → How」という順序を意識し、問題解決の思考を言語化することで、業務改善の効果測定もしっかりと行いたいと考えています。 提案力向上はどうする? こうした取り組みを通して、業務遂行力だけでなく、周囲とのコミュニケーションや提案力も向上させていきたいと思います。
AIコーチング導線バナー

「なぜ × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right