クリティカルシンキング入門

学びを深める振り返りの旅

文章構成はなぜ重要? 文章を書く際には、主語と述語を明確にし、文章全体を俯瞰して構造を整えることが重要です。これにより、論理的かつ順序立てた表現が可能になります。ただし、自分の文章を見直すのは難しく、相手の視点を忘れがちなので、注意を払う必要があります。 書く力はどう鍛える? 言語化することで思考を整理し、概念の理解を深められることに加え、文章を書く習慣を持つことで、その力をさらに鍛えることができます。特に、週に1回400字を目安に文章を作成する習慣を持つと、書く力だけでなく思考力も向上します。 効果的なコミュニケーションはどう実現する? 業務においては、チームや上司への報告や外部の方へのコミュニケーションでも、理由をわかりやすく明確に伝えることが肝心です。メールや書類を送付する前には、内容に間違いがないか、理由が明瞭に書かれているかを確認する習慣をつけます。また、会議ではピラミッドストラクチャーを意識して情報を整理し、わかりやすくまとめるとよいでしょう。このようにして、言語化のプロセスを通じて、より効果的なコミュニケーションを実現します。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

クリティカルシンキング入門

本質を捉える実践思考術

なぜイシューが大切? イシューの特定が最も重要であると実感しました。目的や問いを明確にし、何が課題であるかを意識して考えることが、クリティカルシンキングの本質であると学びました。もしイシューを正確に捉えずに進めてしまうと、求める打ち手に辿りつくことができなくなるため、常にその視点を持つことが不可欠です。 課題整理はどうする? プロジェクトでの課題に直面した際には、まず課題を分解して考えることが効果的です。提案や説明の際も、目的や課題を明確に伝えることで、相手に理解してもらいやすくなります。このアプローチは、課題に対する解決策の解像度を向上させるためにも役立ちます。 仲間の知恵は? また、問題に対してすぐに打ち手を検討するのではなく、まずは課題やイシューが何であるかをしっかり意識すること、そして分解して考える習慣を身につけることが重要です。自分一人で考えるのではなく、チームメンバーや上司の意見を取り入れることで、思考の幅を広げることができ、他のチームの課題に対しても同じく思考し、言語化する練習を継続することが大切だと感じました。

クリティカルシンキング入門

問いが拓く成長の現場

イシューの問いはどう? イシューを特定するための問いの立て方を学びました。問いは具体的な行動に落とし込むことが重要であり、イシューは一貫して追い続ける必要があります。そのため、定期的に立ち返って方針にブレがないかを確認することが大切です。 問いの背景はどう? この手法は、社内のサポート対応にも活用できると感じています。問い合わせ内容をそのまま受け取るのではなく、なぜ問い合わせがあったのかを問い立て、本当に解決すべき課題を掘り下げることで、イシューを明確にし、結果としてサービスレベルの向上に繋がると考えています。 会議で問い直す? また、問い合わせに対して問いを設けた上で、社員とのコミュニケーションを通じて情報収集し、イシューを明確にすることが必要です。メンバーごとに対応内容に違いが出ないようチーム内で共有し、長期間にわたり課題解決が進まない場合は、会議でイシューに立ち返り、問い自体が正しかったのかを含めて検討していくことが求められます。こうした流れを定例会議に組み込むことで、より効果的な対応が実現できると考えています。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

クリティカルシンキング入門

MECE活用でビジネスアイデアを整理する技術

視点の違いをどう活かす? 視点の違いや切り分け方によって、様々な考え方が存在することを理解しました。特に、他の方からの意見で、視点を効率的に切り出す手法を学んだことは非常に参考になりました。これは、私が得意ではないMECEに基づく情報の洗い出しに役立つ効果的な方法であり、大変勉強になりました。 事業企画における情報整理の要点 事業企画においては、ソリューションの提供価値を考える際、誰のどの課題を解決するのかという情報整理を論理的に行うことが重要だと考えています。また、意見交換を通じて、これらの情報が事実に基づいていることの重要性を再認識させられました。また、情報収集の際に実際に現場を訪れることの重要性も感じました。 MECEでの考察がなぜ重要? 現在検討中の事業企画のソリューションが、誰にとってのどの課題を解決するのかを、順序立ててMECEに考えようと思います。そして、一度立ち返って、自分が検討している事業分野全体の課題や提供価値をMECEに考察し、本当にこのソリューションが必要なのかを改めて見直していきたいと思います。

データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

戦略思考入門

選択と集中で業務を効率化する方法

本当に捨てる意味は? 「捨てる」という行為は一見すると簡単に思えますが、意外と難しいと実感しました。ただ単に捨てるのではなく、目指すべきゴールを明確にすることで、必要なものと不要なものを選択する必要があると感じました。その際、数値的な根拠を示すことで、選択がより明確になると思います。限られた資源や時間の中で最速で目標に到達するには、「捨てる」ことが非常に重要だと感じました。 業務無駄は疑うべき? 業務効率化の観点でも、「捨てる」選択は必要です。たとえば、「以前からこうだったから」といった理由で行われている業務は、実際になぜ行っているのかわからない場合があります。このような業務には無駄があるため、「捨てる」ことを提案していくべきです。 業務改善の洗い出しは? 【業務効率化のステップ】 まず、自分の業務を洗い出してみましょう。その中で、不要な業務や惰性で行っている業務がないかを考えてみてください。不要だと感じた業務が本当に効果がないのかを検証し、その後、数値的根拠を示すことができれば、上司や同僚に提案を行うと良いでしょう。

データ・アナリティクス入門

なぜとどうで解く課題の本質

なぜWhyとHowを重視? 今週は、What→Where→Why→Howの流れの中でも、特にWhyとHowの部分に重点を置いて学習しました。問題解決のプロセスとして、まずプロセスを細かく分解し、その問題に至る各課題について、なぜその状況に至ったのかを仮説を立てながら考える手法が印象に残りました。 なぜ原因を深堀? また、複数の原因を明確な根拠に基づいて絞り込むことが、問題の本質を理解する上で非常に大切だと感じました。実務においても、売上やサイト訪問数などの行動変容と、認知度や利用意向といった態度変容の両面から施策を検証し、その結果に対してなぜ売上が伸びたのか、認知度が上がったのかと、丁寧にプロセスを分解することの重要性を再認識しました。 なぜ多角的検証? さらに、施策の結果をすぐに結論づけるのではなく、各プロセスを細かく見直し、仮説に基づいて多角的な切り口で施策を検討する姿勢が大切だと感じました。そのため、A/Bテストや簡易調査などを定期的に行い、施策の効果や課題を可視化して検証することが求められると学びました。

クリティカルシンキング入門

日本語の力を磨き、説得力ある文書を作成する方法

なぜ日本語の正しさが重要か? 日本語を正しく使うことの重要性を痛感しました。特に、主語と述語がぶれずに明確になっているかどうかを常に意識することが重要だと感じています。また、物事を伝える際には、目的だけでなくその理由も合わせて伝える必要があると感じました。 どうやって説得力を高める? 提案資料や報告書などでは、何を伝えなければならないのかという目的を明確にし、それに対する補足説明を適切に文書化することで、説得力のあるドキュメントを作成したいと思います。ロジックツリーはドキュメント作成以外でも課題解決に役立つ整理手法だと考えており、今後も積極的に活用していきたいです。 訓練で何が身につく? また、主語と述語の明確化は日常的な訓練により自然に身につくと考えています。日々の議事録、稟議書、報告書、提案書などを作成する際に、これらを見直す習慣をつけたいと思います。抽象的な目的を具体化する際には、ロジックツリーを使って整理することが効果的と感じており、計画立案時の具体策検討時に積極的に活用したいと考えています。

データ・アナリティクス入門

新たな指標で描くデータの未来

どうしてデータ加工が必要? これまで、データ分析では単純平均や標準偏差、棒グラフ、散布図など、一般的な方法を用いてきました。しかし、集めたデータを適切に加工しなければ、想定していた答えや正確な結果を得るのは難しいと学びました。今後は、必要に応じて加重平均や中央値などをより効果的に活用していきたいと考えています。 どの指標が本当に有効? また、単純平均や標準偏差だけに頼ると、データの見え方が一面的になりかねません。そのため、加重平均や幾何平均、中央値といった指標を取り入れ、どの指標がデータを最も適切に表しているのかを検証しながら分析を進めたいと思います。これまでとは異なる視点からデータが見えることを期待しています。 なぜ仮説検証が重要? 特に、私の業務は問題解決のための分析とあるべき姿の考察の両面に関わるため、その時々で適切な仮説を立て、データの表し方を工夫することが求められます。状況に応じた分析手法を積極的に取り入れることで、より正確なデータ分析に繋げていきたいと思います。

デザイン思考入門

お客様起点で描く学びの未来

アイディアは何故大切? 思いついたアイディアは、すぐに書き留めアウトプットすることで、第三者からの反応や意見を取り入れ、改良改善に繋げることが大変有効だと感じました。その際、AIの活用も新たな視点を提供してくれる点が参考になりました。 顧客視点はなぜ重要? また、自分たちが売りたいものを考えるのではなく、まずターゲットとなるお客様が抱える課題に目を向け、自分たちの商品がどのようにその課題にアプローチできるかを検討する「お客様起点」の視点が重要だと実感しました。目先の業務効率にとらわれず、各業務の目的や影響先を広い視野で捉えることが、より効果的な取り組みへと導くと感じています。 どう選ぶべき管理ツール? 現在、顧客管理ツールの見直しを進めています。数ある提案の中から最適なものを選ぶためにも、まず自分たちが目指すべき姿やゴールを改めて確認し、希望やアイディアは制限せずに協力先へ積極的にアウトプットすることが成功の鍵だと感じました。今後も引き続き、より良い改善に努めていきます。

「なぜ × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right