データ・アナリティクス入門

ひらめきと検証、学びのワクワク旅

仮説とは何だろう? 仮説とは、ある論点に対する仮の答えや、まだ十分に理解できていないことに対する仮の答えのことです。目的に応じて、結論の仮説と、具体的な問題解決を推進するためのプロセスに沿った問題解決の仮説に分類されます。 なぜ複数を検討する? 仮説を考える際は、まず複数の仮説を立て、ひとつに固執しないことが重要です。異なる視点から複数の切り口を用意することで、網羅性のある考察が可能となります。 どの要素を比べる? また、検証の際には、どの要素を比較するのかという意図を明確にしながら進めることが肝心です。単に何となく比較するのではなく、仮説に対する反論に対応できるよう、比較対象となるデータを計画的に収集してください。データ収集時には、誰に、どのように質問するかが回答結果に影響する点にも留意する必要があります。 どうデータを公平に扱う? さらに、検証データを集める際は、自身の都合の良いデータだけに依存せず、フラットな気持ちで客観的にデータを扱いましょう。説明資料を作成する際には、想定される反論やコメントにも対応できるよう、十分な根拠となるデータを盛り込むことが求められます。 検証習慣はどうある? 日頃から、仮説とそれを裏付けるために必要なデータの関係性を意識し、どのようなデータがあれば検証に役立つのかをセットで考えておく習慣を身につけることが、効果的な問題解決に繋がるでしょう。

クリティカルシンキング入門

深掘りで変わる!バイアス解消術

ライブ授業で得た気づきとは? ライブ授業の実習を通じて、自分の思考にバイアスがかかっていることを実感したため、物事を深掘りすることの重要性を改めて感じました。MECE(Mutually Exclusive, Collectively Exhaustive)やロジックツリーといった手法を学び、それを自分のものとして使いこなせるようになることで、より深く物事を考え振り返る行動につなげることができると考えています。 提案資料にどう活用する? 社内システムの担当として、ITを駆使し事業課題を解決するシステムの企画や立案を行う際には、一度自分の考えを止めて客観的な視点を取り入れ、提案資料にその考えを反映させるよう努めています。そうすることで、より説得力のある資料を作成できるのではないかと考えています。また、部下との評価面談では、クリティカルシンキングを活用して部下の考えを引き出し、自分の意見も効果的に伝えることができると思っています。 判断を支える習慣とは? 自身で何らかの判断を行う際には、なぜその判断に至ったのか自問する習慣を身につけることが重要です。その問いかけをロジックツリーなどに書き起こして思考を整理します。これを実践するために、PCの付箋アプリにこれらの行動を記載して常に視界に入れるようにし、ロジックツリーなどで思考を整理するためのメモ用紙を常に手元に置いて実践していきたいと考えています。

データ・アナリティクス入門

実践で納得!A/Bテストの極意

A/Bテストって何? A/Bテストの実施方法がとても参考になりました。まず、目的を明確に設定した上で、テスト期間や条件をできるだけ統一し、一つの要素に絞ってテストを行う重要性を学びました。これまであまり理解していなかった点を、具体的な説明を受けながらしっかりと納得することができました。 仮説の検証はどう? また、仮説を立ててテストを行い、その検証を実施した後、もし仮説が間違っている場合はなぜそうなったのかを考察することの必要性にも気づかされました。これらの学びは、今後の業務にぜひ活かしていきたいと考えています。 広告効果はどこで? 弊社ではクリスマスシーズンによくWeb広告を実施していますが、その際にA/Bテストを行うことで、広告の成果を向上させることができるのではないかと思います。特に、効果的な文言を選定する点では、コストも低く簡単に実施できるため、今年のクリスマスキャンペーンで取り入れてみたいと考えています。 チームでどう動く? 具体的には、まずチーム内でA/Bテストの概要を共有し、昨年度の広告で使用したビジュアルや文言を振り返りました。その上で、今年のキャンペーンでは複数のパターンのデザインや文言を用意することを提案する予定です。また、正確なデータを得るために、どのくらいの規模のオーディエンスに対してテストを行えばよいかについても、さらに調べて学びたいと思います。

データ・アナリティクス入門

問題解決で差がつく!実践の一歩

問題解決の重要性とは? 問題を特定し、要素を分解することについて、普段の業務ではそれほど深く考えず、安易に解決方法を決めてしまっていると痛感しました。問題箇所を解決した場合の理想像への影響度を検討することは重要であり、これは顧客への提案時にそのまま費用対効果として役立ちます。その結果、より効果的で説得力のある提案ができるようになると感じました。 理想像の共有方法は? また、理想像を定量的に判断できる指標として変換し、関係者と合意することも重要です。最初の問題設定で認識のズレが生じると、後からプロジェクトの方針が社内外の関係者と異なってしまうことがあります。今後は、認識のズレが起こらないように注意して取り組みたいと思います。 認識のズレをなくすには? 問題点や課題の設定を誤る場面が多いことに気づきました。社内の関係者間でも微妙に異なる捉え方をしているケースがあるため、理想像を定量的に指標化し、関係者と合意することを今後の業務で活用したいと考えています。 DX化推進での課題は? さらに、企業のDX化を推進する場面では、「どこに問題があるのか」や「なぜ問題が起きたのか」で、「人間の質」が問題となることが多々あります。これまではそのような問題に対する解決方法を提案することが難しかったのですが、今後は問題をさらに深く分解し、捉え方を変えることで解決策が見つかるかもしれないと思いました。

データ・アナリティクス入門

経営者気分で学ぶ仮説解決術

データと仮説でどう考える? これまでの総復習を通して、まずデータを用いて問題の所在を読み解き、原因を仮説思考で考察し、その上で対策を検討するフレームワークを再確認できました。どんな状況においても、ロジカルに物事をとらえ、データを基に仮説を立てることで問題解決の道筋を描く大切さを強く実感しました。 なぜ一貫性が感じられる? また、ストーリー全体に一貫性があり、学びの流れが頭にしっかりと残りました。経営者になった気分で対策を検討できたことも、非常に印象に残っています。 マーケ実践はどう進む? マーケティングの分野では、日頃の活動にデータドリブンな視点を取り入れることで、施策の有効性の比較、優先順位の設定、費用対効果や効果の見通しなど、具体的な対策を実行に移す自信が持てました。施策の判断軸となる評価項目や様式を統一することで、正しい比較ができる点も大変有用だと感じました。 病院DXで何を改善? 一方で、病院のDX推進においては、導入率のトラッキングや向上施策、トレーニングの立案など、データに基づいた仮説と検証を繰り返す取り組みが今後の課題となると同時に、実践的な対策として役立つと考えています。目的を明確にし、過不足なくデータを収集、複数のメンバーと多角的な視点で仮説をたて検証することで、事前に設定した評価項目を使いながら、効果を正確に測る仕組みを構築する重要性を再認識しました。

クリティカルシンキング入門

じっくり考えるMECE習慣

なぜじっくり考えるの? 無意識に考えやすいことをそのまま答えとしてしまう傾向に気付き、まずは意識的に立ち止まってじっくり考えることの大切さを実感しました。自分自身の思考パターンを見直す中で、視点を変える努力の必要性を改めて感じる機会となりました。 MECEの活用はどうする? また、MECE(モレなくダブりなく)の概念については、業務である程度使ってはいるものの、まだ十分に活用できていない部分があると感じました。そこで、隙間時間を利用して紙にさまざまなMECEのパターンを書き出すなどの方法で、頭の中でも自然にMECEの考え方が活用できるよう練習を続けたいと思います。 資料整理の秘訣は何? 加えて、MECEの活用は構成や話の流れを明確にし、プレゼンテーションや報告資料作成時に「段落ごとに重複がないか」「カバーできていないポイントがないか」を点検するのに非常に役立つと実感しました。こうした整理の方法を仕事に取り入れることで、より論理的な資料作成が可能になると期待しています。 問題解決はどう導く? さらに、ロジックツリーについても、自分の日々の課題にどのように活用できるか、またどんな種類の問題解決に特に効果があるのか、しっかりと考えていく必要性を感じました。自分自身の業務にどう落とし込むかを意識し、効率的な問題解決の手法として今後も活用していきたいと考えています。

データ・アナリティクス入門

現象を超えて問題の根本に向き合う方法

問題原因をどう特定する? 問題の原因を明らかにするためには、プロセスを細かく分解することが重要です。そして解決策を検討する際には、複数の選択肢を洗い出し、その根拠に基づいて絞り込むことが求められます。 幅広く解決策を模索するには? 私の癖として問題と認識している点は、現象に焦点を当ててしまうことです。このため、なぜそれが問題なのかをさらに分解整理し、その構造を明らかにすることが必要です。その上で、解決策を思いつきや経験で狭めてしまわず、幅広く検討し、なぜそうするのが良いのかを考え実行し、分析することが重要であると感じました。 業務改善に必要なフローは? 具体的な業務としては、説明資料の作成や土地の探索、収支検討などが挙げられます。これらの部分で改善を図り、成果に結びつけるためには、業務フローや仕事上のプロセスを整理・分解し、成果に結びつく打ち手を検討し実行した上で、さらに改善すべき点を検討することが不可欠です。 データ活用の重要性とは? また、データを収集する経験を深めることも重要です。日頃から意識的にデータを取ることで、どのようにデータが業務に効果を与えるかを考えることができます。説明資料を作成する際には、作り込みすぎずにスライドのパターンをいくつか作成し、A/Bテストの要領で部内や課内でフィードバックテストを行うことも推奨されます。

マーケティング入門

顧客に商品の魅力を伝える工夫とは?

コミュニケーションの難しさとは? 今週の演習を通じて、コミュニケーションの難しさを改めて感じました。1対1のコミュニケーションでも誤解が生じたり、伝えたい意図が正しく認識されないことが多々ありますが、1対Nのコミュニケーションとなる商品宣伝のケースでは、その問題が一層重要になります。商品の良さを正しく伝えるためには、工夫や言葉の選び方が重要であることを改めて実感しました。効率的に商品の良さを理解してもらうためには、セグメンテーション化などを通じてターゲットを絞り込み、消費者像を具体化することが有効だと感じました。 ターゲットへの効果的なアプローチ法 新商品の説明を顧客に行う際には、セグメンテーション化を通じてターゲットを絞り込み、言葉の選び方を工夫することで、より効果的にアプローチできると感じました。また、顧客のITリテラシーなどの定性情報を活用することで、さらに効果的なアプローチが可能になると考えました。 売れない商品の原因をどう探る? 自社の売れない商品について原因を深掘りし、ロジカルに言語化して説明できるように実践することが重要だと感じました。また、Yahoo!ニュースなどウェブサイトで表示されるバナー広告を観察し、なぜ自分に表示されているのか、その切り口がどのようなセグメンテーションによるものかを考える習慣をつけることも役立つと感じました。

クリティカルシンキング入門

思考の幅を広げるための秘訣

思考の視野を広げるには? 自分の思考は、慣れた方法にとらわれてしまいがちで、視野が自分中心になっていることに気づきました。これを解決するためには、視点を変え、視座を高め、視野を広くすることが重要です。まずは、どのように考えるかを意識することが大事です。相手には文章としてしっかり伝わるように心がけ、目的をしっかり見つめることが必要です。 目的理解の重要性とは? 大切なのは、ただすぐに行動を起こすのではなく、目的をしっかりと理解し、思考のプロセスを意識する時間を設けることです。プロジェクト内では、チームメンバーに目的をしっかりと説明したうえで、他の視点がないかを考えるよう促すことが役立ちます。また、業務内の小さなタスクについても、その目的を理解し、Alternativeな方法がないかを考える習慣をつけることが重要です。 問題解決の前に確認すべき点は? 問題解決に急ぐのではなく、まず目的をしっかりと理解しているかを確認します。その際に「なぜ」を繰り返し問い直すことも効果的です。自分の思考の癖を客観的にとらえるために、考えを紙に書き出すと良いでしょう。そしてミーティング中は、チームメンバーとともに目的の理解やプロジェクトの前提を確認し、多様な視点や視座、広い視野で議論ができる環境を整えることに努めます。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

データ・アナリティクス入門

残業削減の鍵はロジックツリーとIT活用にあり

問題の本質をどう見極める? 問題や課題に対応する際、すぐに対応策を安直に打ち出すのではなく、まずはその問題や課題がどのようなもので、なぜ、どこで発生しているのかを考える必要があると学びました。これを実現するために、MECEの考え方を用いてロジックツリーで問題や課題を細分化し、対応策を複数検討し、状況に応じて採用する対応策を決定することが合理的な判断となることがわかりました。 IT活用で解決策を見つけるには? また、ITの活用によって業務効率化を検討する際には、「業務効率化」という漠然とした課題を、ロジックツリーで細分化することで解決の手がかりを得ることができます。具体的には、どこで、なぜ、どのような問題が発生しているのかを特定し、その問題を解消できるITを導入することによって、費用対効果を意識した問題解決が可能となることを理解しました。この学びは、現実の問題解決に活かせるものだと考えています。 部署の問題をどう改善する? 現在、所属する部署では残業時間が非常に多く、人員も多いという問題があります。この部署でどの作業が一番多く時間を要しているのかを、ロジックツリーで特定しました。その結果、出荷日や納期変更が頻発している作業が問題であると判明しました。したがって、この部分に有効なITの導入や、業務プロセス自体の見直しを提案したいと考えています。

データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。

「なぜ × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right